




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市播州区泮水中学2024届八年级下册数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若在实数范围内有意义,则x的取值范围是()A.x>-4 B.x≥-4 C.x>-4且x≠1 D.x≥-4且x≠-12.如图,数轴上所表示关于x的不等式组的解集是()A. B. C. D.3.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m≥﹣1 D.m≤﹣14.如图,在中,分别是的中点,点在上,是的角平分线,若,则的度数是()A. B. C. D.5.若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是()A.-4<b<8 B.-4<b<0 C.b<-4或b>8 D.-4≤6≤86.只用下列图形不.能.进行平面镶嵌的是()A.全等的三角形 B.全等的四边形C.全等的正五边形 D.全等的正六边形7.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若、、、对应的邻补角和等于,则的度数为()A. B. C. D.8.小明发现下列几组数据能作为三角形的边:①3,4,5;②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有()组A.1 B.2 C.3 D.49.若a>b,则下列式子正确的是()A.a+2<b+2 B.﹣2a>﹣2b C.a﹣2>b﹣2 D.a10.若x<y,则下列结论不一定成立的是()A. B. C. D.11.平行四边形ABCD的对角线相交于点0,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为6,那么平行四边形ABCD的周长是()A.8 B.10 C.12 D.1812.下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.在同一平面内,垂直于同一条直线的两条直线平行二、填空题(每题4分,共24分)13.已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为______cm.14.若,则分式_______.15.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.16.二次根式中,x的取值范围是________.17.已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是_______18.分解因式:____.三、解答题(共78分)19.(8分)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.20.(8分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.21.(8分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到永丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒,,.(1)求A、B之间的路程;(2)请判断此车是否超过了永丰路每小时54千米的限制速度?(参考数据:)22.(10分)如图,点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点.(1)如果图中线段都可画成有向线段,那么在这些有向线段所表示的向量中,与向量相等的向量是;(2)设=,=,=.试用向量,或表示下列向量:=;=.(3)求作:.(请在原图上作图,不要求写作法,但要写出结论)23.(10分)如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)24.(10分)已知x=,y=,求下列各式的值:(1)x2-xy+y2;(2).25.(12分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.26.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】
直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.【详解】若在实数范围内有意义,则x+4≥0且x+1≠0,解得:x≥-4且x≠-1,故选D.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键.2、A【解析】试题解析:由数轴可得:关于x的不等式组的解集是:x≥1.故选A.3、D【解析】
由一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则2m+1<0,且﹣m﹣1≥0,解两个不等式即可得到m的取值范围.【详解】∵一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,∴2m+1<0,且﹣m﹣1≥0,由2m+1<0,得:m;由﹣m﹣1≥0,得:m≤﹣1.所以m的取值范围是m≤﹣1.故选D.【点睛】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.4、A【解析】
由分别是的中点,可得DE//BC,利用平行线性质及角平分线性质进行计算即可.【详解】解:∵分别是的中点∴DE//BC∴∠AED=∠C=80°∵是的角平分线∴∠AED=∠DEF=80°∵DE//BC∴∠DEF+∠EFB=180°∴=100°故答案为:A.【点睛】本题考查了三角形中位线的性质、平行线的性质和角平分线的性质,掌握中位线的性质是解题的关键.5、A【解析】
联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由解得∵交点在第三象限,∴,解得∴-4<b<1.故选A.6、C【解析】
判断一种图形是否能够镶嵌,只要看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.根据以上结论逐一判断即可.【详解】解:A项,三角形的内角和是180°,是360°的约数,能镶嵌平面,不符合题意;B项,四边形的内角和是360°,是360°的约数,能镶嵌平面,不符合题意;C项,正五边形的一个内角的度数为180-360÷5=108,不是360的约数,不能镶嵌平面,符合题意;D项,正六边形的一个内角的度数是180-360÷6=120,是360的约数,能镶嵌平面,不符合题意;故选C.【点睛】本题考查了平面镶嵌的知识,几何图形能镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.用一种正多边形单独镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.7、C【解析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和,可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为225°,
∴∠1+∠2+∠3+∠4+225°=4×180°,
∴∠1+∠2+∠3+∠4=495°,
∵五边形OAGFE内角和=(5-2)×180°=540°,
∴∠1+∠2+∠3+∠4+∠BOD=540°,
∴∠BOD=540°-495°=45°,
故选:C.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.8、B【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】①∵∴此三角形是直角三角形,符合题意;②∵∴此三角形是直角三角形,符合题意;③∵∴此三角形不是直角三角形,不符合题意;④∵∴此三角形不是直角三角形,不符合题意;故其中能作为直角三角形的三边长的有2组故选:B【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、C【解析】
依据不等式的基本性质进行判断,即可得出结论.【详解】解:若a>b,则a+2>b+2,故A选项错误;若a>b,则-2a<-2b,故B选项错误;若a>b,则a-2>b-2,故C选项正确;若a>b,则12a>1故选:C.【点睛】本题主要考查了不等式的基本性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.10、C【解析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A,不等式两边同时减3,不等式的方向不变,选项A正确;B,不等式两边同时乘-5,不等式的方向改变,选项B正确;C,x<y,没有说明x,y的正负,所以不一定成立,选项C错误;D,不等式两边同时乘,不等式的方向改变,选项D正确;故选:C.【点睛】本题主要考查了不等式的性质,即不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变;理解不等式的性质是解题的关键.11、C【解析】试题分析:根据OM⊥AC,O为AC的中点可得AM=MC,根据△CDM的周长为6可得AD+DC=6,则四边形ABCD的周长为2×(AD+DC)=1.考点:平行四边形的性质.12、D【解析】
利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.【详解】A、如果a2=b2,那么a=±b,故错误,是假命题;B、两直线平行,同位角才相等,故错误,是假命题;C、相等的两个角不一定是对项角,故错误,是假命题;D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大.二、填空题(每题4分,共24分)13、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答即可.解:∵直角三角形斜边上的中线长为6,∴这个直角三角形的斜边长为1.考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.14、【解析】
先把化简得到,然后把分式化简,再把看作整体,代入即可.【详解】∵,化简可得:,∵,把代入,得:原式=;故答案为:.【点睛】本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.15、1【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.16、【解析】
根据二次根式有意义的条件进行求解即可得.【详解】根据题意,得,解得,,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.17、【解析】
根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.【详解】解:∵菱形的性质,
∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.
连接BE交AC于P点,
PD=PB,
PE+PD=PE+PB=BE,
在Rt△ABE中,由勾股定理得故答案为3【点睛】本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.18、(3x+1)2【解析】
原式利用完全平方公式分解即可.【详解】解:原式=(3x+1)2,故答案为:(3x+1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.三、解答题(共78分)19、(1)证明见解析;(2).【解析】
(1)截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;(2)取AB中点M,连接EM,求出BM=BE,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.【详解】(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°∵CF是正方形的∠C外角的平分线,∴∠ECF=90°+45°=135°∴∠AME=∠ECF,∵AB=BC,BM=BE,∴AM=EC,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∵∠BAE+∠AEB=90°,∴∠BAE=∠CEF,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.20、(1)详见解析;(2)详见解析;(3),理由详见解析.【解析】
(1)根据SAS即可证明;
(2)欲证明DF=DG,只要证明∠DFG=∠DGF;
(3)如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.首先说明G是△BEF的内心,由题意Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,推出FH=FM,EH=EN,GN=GM=BM=BN=y,由EH:FH=1:3,设EH=a,则FH=3a,FB=3a+y,BE=a+y,EC=AF,推出FB+BE=2x,可得3a+y+a+y=2x,即y=x-2a,推出CN=2a,推出CE=a,想办法用a表示x、y即可解决问题;【详解】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠C=∠BAD=∠DAF=90°,CD=DA,在△ADF和△CDE中,∴△ADF≌△CDE.(2)证明:如图1中,∵四边形ABCD是正方形,∴∠FBG=45°,∵△ADF≌△CDE,∴DF=DE,∠ADF=∠CDE,∴∠EDF=∠ADC=90°,∠DFE=45°,∵∠DFG=45°+∠EFG,∠DGF=45°+∠GFB,∵∠EFG=∠BFG,∴∠DFG=∠DGF,∴DF=DG.(3)结论:理由:如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.∵GF平分∠BAE,DB平分∠EBF,∴G是△BEF的内心,∵GH⊥EF,∴GH=GN=GM=y,∵FG=FG,EG=EG,∴Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,∴FH=FM,EH=EN,GN=GM=BM=BN=y,∵EH:FH=1:3,设EH=a,则FH=3a,∵FB=3a+y,BE=a+y,∵EC=AF,∴FB+BE=2x,∴3a+y+a+y=2x,∴y=x﹣2a,∴CN=2a,∵EN=EH=a,∴CE=a,在Rt△DEF中,DE=2a,在Rt△DCE中,∴∴【点睛】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、等腰三角形的判定、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.21、(1)A、B之间的路程为73米;(2)此车超过了永丰路的限制速度.【解析】
(1)首先根据题意,得出,,然后根据,,可得出OB和OA,即可得出AB的距离;(2)由(1)中结论,可求出此车的速度,即可判定超过该路的限制速度.【详解】(1)根据题意,得,∵,∴,∴故A、B之间的路程为73米;(2)根据题意,得4秒=小时,73米=0.073千米此车的行驶速度为千米/小时千米/小时>54千米/小时故此车超过了限制速度.【点睛】此题主要考查直角三角形与实际问题的综合应用,熟练掌握,即可解题.22、(1);(2)+、+﹣;(3)如图所示见解析..【解析】
(1)由中位线定理得EF∥AC、EF=AC,HG∥AC、HG=AC,从而知EF=HG,且EF∥HG,根据相等向量的定义可得;(2)由可得;(3)由G为DC中点知,从而得=,据此根据三角形法则作图即可得.【详解】(1)∵E、F是AB、BC的中点,H、G是DA、DC的中点,∴EF∥AC、EF=AC,HG∥AC、HG=AC,∴EF=HG,且EF∥HG,∴,故答案为:;(2)由图知,则,故答案为:;(3)如图所示:.【点睛】本题考查平面向量的知识,解题的关键是掌握中位线定理、相等向量的定义及三角形法则.23、(10+10)海里【解析】
利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC不变列出方程x=20+x,解方程即可.【详解】如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴PC=BC=x海里,在Rt△APC中,∵tan∠APC=,∴AC=PC•tan60°=x,∴x=20+x,解得x=10+10,则PC=(10+10)海里.答:轮船航行途中与灯塔P的最短距离是(10+10)海里.【点睛】本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度全国总代理合同:XX服装品牌全国市场总代理权授权书
- 台球馆装修合同模板及明细
- 2025年度塑胶颗粒行业人才培训与引进合作协议
- 2025年度房屋租赁房东合同-租赁合同风险防控指南
- 工厂水电安装协议范本
- 2025年度多式联运货物保险合同样本
- 2025年度医疗机构执业药师聘用合同及药品安全培训协议
- 2025年度手电动车转让协议书:手电动车品牌加盟连锁经营合同
- 2025年度互联网干股合作协议范本
- 2025年度个人银行卡领用与高端商务服务合同
- LY/T 2501-2015野生动物及其产品的物种鉴定规范
- GB/T 5915-2020仔猪、生长育肥猪配合饲料
- 五十二个中医护理方案
- GB/T 2678.1-1993纸浆筛分测定方法
- GB 18450-2001民用黑火药
- GA 1206-2014注氮控氧防火装置
- DB37-T 2401-2022危险化学品岗位安全生产操作规程编写导则
- 2023年包头市水务(集团)有限公司招聘笔试题库及答案解析
- 云南省专业技术职务任职资格推荐评审表(空白表)
- 施工机具进场检查验收记录
- HSK标准教程4上第1课课件
评论
0/150
提交评论