




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市雄县2024年八年级数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形2.下列计算错误的是()A.÷=3 B.=5C.2+=2 D.2•=23.如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为()A.28° B.52° C.62° D.72°4.如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=5,CE=3,则平移的距离为()A.1 B.2 C.3 D.55.如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为().A. B. C.16 D.6.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.4 B.3 C.2 D.17.如图,在菱形ABCD中,AC与BD相交于点O,AC=6,BD=8,则菱形边长AB等于()A.10 B. C.5 D.68.下列说法中正确的是()A.在中,.B.在中,.C.在中,,.D.、、是的三边,若,则是直角三角形.9.已知点(-4,y1),(2,y2)都在直线y=-3x+2上,则y1,y2的大小关系是A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较10.化简的结果是()A. B. C.1 D.二、填空题(每小题3分,共24分)11.若分式的值为0,则x=_____.12.点A(2,1)在反比例函数y=的图象上,当1<x<4时,y的取值范围是.13.如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.14.一次函数的图象如图所示,不等式的解集为__________.15.图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.16.如下图,用方向和距离表示火车站相对于仓库的位置是__________.17.将二次根式化为最简二次根式的结果是________________18.如图是某超市一层到二层电梯的示意图,其中AB、CD分别表示超市一层、二层电梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘电梯从点B到点C上升的高度h约为________米.三、解答题(共66分)19.(10分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.(1)求中巴车和大客车各有多少个座位?(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?20.(6分)小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.(2)解完“思考题”后,小聪提出了如下两个问题:①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.21.(6分)已知,如图,在平面直角坐标系xoy中,直线l1:y=x+3分别交x轴、y轴于点A、B两点,直线l2:y=-3x过原点且与直线l1相交于C,点(1)求点C的坐标;(2)求出ΔBCO的面积;(3)当PA+PC的值最小时,求此时点P的坐标;22.(8分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.(1)求OB的长度;(2)设DP=x,CQ=y,求y与x的函数表达式(不要求写自变量的取值范围);(3)若OCQ是等腰三角形,求CQ的长度.23.(8分)如图,将等边绕点顺时针旋转得到,的平分线交于点,连接、.(1)求度数;(2)求证:.24.(8分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:(1)线段AF与CF的数量关系是.(2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.25.(10分)已知:如图,在等腰梯形中,,,为的中点,设,.(1)填空:________;________;________;(用,的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可)26.(10分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.2、C【解析】
根据二次根式的运算法则及二次根式的性质逐一计算即可判断.【详解】解:A、÷=3÷=3,此选项正确;B、=5,此选项正确;C、2、不能合并,此选项错误,符合题意;D、2•=2,此选项正确;故选C.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及二次根式的性质.3、A【解析】
连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=62°,∴∠BCA=∠DAC=62°,∴∠OBC=90°-62°=28°.故选:A.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.4、B【解析】
根据平移的性质即可求解.【详解】∵△ABC沿着水平方向向右平移后得到△DEF,BC=5,CE=3,∴BE=2,即平移的距离为2.故选B.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的性质.5、B【解析】
由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.【详解】∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4-2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.【点睛】考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.6、B【解析】
可设2米的彩绳有x条,1米的彩绳有y条,根据题意可列出关于x,y的二元一次方程,为了不造成浪费,取x,y的非负整数解即可.【详解】解:设2米的彩绳有x条,1米的彩绳有y条,根据题意得2x+y=5,其非负整数解为:x=0y=5,故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.7、C【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】∵四边形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
∵AC=8,BD=6,
∴OA=4,OB=3,
∴AB==1,
即菱形ABCD的边长是1.
故选:C.【点睛】考查了菱形的对角线互相垂直平分的性质和勾股定理的应用,熟记菱形的对角线的关系(互相垂直平分)是解题的关键.8、D【解析】
根据勾股定理以及勾股定理的逆定理逐项分析即可.【详解】A.因为不一定是直角三角形,故不正确;B.没说明哪个角是直角,故不正确;C.在中,,则,故不正确;D.符合勾股定理的逆定理,故正确.故选D.【点睛】本题考查了勾股定理,以及勾股定理逆定理,熟练掌握定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.9、A【解析】
先求出y1,y1的值,再比较其大小即可.【详解】解:∵点(-4,y1),(1,y1)都在直线y=−3x+1上,∴y1=11+1=14,y1=−6+1=−4,∴y1>y1.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10、B【解析】
根据二次根式的性质可得=∣∣,然后去绝对值符号即可.【详解】解:=∣∣=,故选:B.【点睛】本题主要考查二次根式的化简,解此题的关键在于熟记二次根式的性质.二、填空题(每小题3分,共24分)11、1【解析】
直接利用分式的值为零,则分子为零分母不为零,进而得出答案.【详解】∵分式的值为0,∴x2-1=0,(x+1)(x-3)≠0,解得:x=1.故答案为1.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12、<y<1【解析】试题分析:将点A(1,1)代入反比例函数y=的解析式,求出k=1,从而得到反比例函数解析式,再根据反比例函数的性质,由反比例图像在第一象限内y随x的增大而减小,可根据当x=1时,y=1,当x=4时,y=,求出当1<x<4时,y的取值范围<y<1.考点:1、待定系数法求反比例函数解析式;1、反比例函数的性质13、【解析】
连接DE、CD,先证明四边形DEFC为平行四边形,再求出CD的长,即为EF的长.【详解】连接DE、CD,∵D、E分别是AB、AC的中点,CF=BC∴DE=BC=CF,DE∥BF,∴四边形DEFC为平行四边形,∵BD=AB=,BC=3,AB⊥BF,∴EF=CD=【点睛】此题主要考查四边形的线段求解,解题的关键是根据题意作出辅助线,求证平行四边形,再进行求解.14、【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.【详解】解:根据图象可得:解得:所以可得一次函数的直线方程为:所以可得,解得:故答案为【点睛】本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.15、(1);(2)见解析.【解析】
(1)利用等边三角形的性质,解直角三角形即可解决问题.(2)利用数形结合的思想解决问题即可(答案不唯一).【详解】解:(1)AB=2×1×cos30°=,故答案为:.(2)如图②中,△DEF即为所求.【点睛】本题考查作图——应用与设计,等边三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、东偏北20°方向,距离仓库50km【解析】
根据方位角的概念,可得答案.【详解】解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,故答案为:东偏北20°方向,距离仓库50km.【点睛】本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.17、4【解析】
直接利用二次根式的性质化简求出答案.【详解】,故答案为:4【点睛】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.18、1【解析】过点C作CE⊥AB,交AB的延长线于E,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=12BC故答案是1.点睛:本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.三、解答题(共66分)19、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.【解析】试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.(1)在保证学生都有座位的前提下,有三种租车方案:①单独租用中巴车,需要租车辆,可以计算费用.②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有解之得:x1=45,x1=﹣90(不合题意,舍去).经检验x=45是分式方程的解,故大客车有座位:x+15=45+15=60个.答:每辆中巴车有座位45个,每辆大客车有座位60个.(1)解法一:①若单独租用中巴车,租车费用为×350=1100(元)②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)③设租用中巴车y辆,大客车(y+1)辆,则有45y+60(y+1)≥170解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求这时租车费用为350×1+400×3=1900(元)故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.解法二:①、②同解法一③设租用中巴车y辆,大客车(y+1)辆,则有350y+400(y+1)<1000解得:.由y为整数,得到y=1或y=1.当y=1时,运送人数为45×1+60×1=165<170,不合要求舍去;当y=1时,运送人数为45×1+60×3=170,符合要求.故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.考点:一元一次不等式的应用;解一元二次方程-因式分解法;分式方程的应用.20、(1)(x+0.7)2+22=2.52,0.8,-2.2(舍去),0.8;(2)【问题一】不会是0.9米,理由见解析;【问题二】有可能,理由见解析.【解析】
(1)直接把B1C、A1C、A1B1的值代入进行解答即可;
(2)把(1)中的0.4换成0.9可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入(1)中方程,求出x的值符合题意.【详解】(1)(x+0.7)2+22=2.52,0.8,-2.2(舍去),0.8;(2)【问题一】不会是0.9米.若AA1=BB1=0.9,则A1C=2.4-0.9=1.5,B1C=0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25,∵A1C2+B1C2≠A1B12,∴该题的答案不会是0.9米;【问题二】有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有(x+0.7)2+(2.4-x)2=2.52,解得x=1.7或x=0(舍去).∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.【点睛】本题考查的是解直角三角形的应用及一元二次方程的应用,根据题意得出关于x的一元二次方程是解答此题的关键.21、(1)点C-34,94;(2)【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;(2)将x=0代入y=x+3,求出OB的长,再利用(1)中的结论点C-34(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.【详解】解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,∴y=x+3解得:x=-∴点C-(2)∵把x=0代入y=x+3,解得:y=3,∴OB=3,又∵点C-∴S==9(3)如图,作点A(-3,0)关于y轴的对称点A'(3,0),连接CA'交y轴于点P,此时,PC+PA最小,最小值为CA'=CA由(1)知,C-∵A'(3,0),∴直线A'C的解析式为y=-3∴点P0,【点睛】此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.22、(1)5;(2);(3)当或时,⊿OCQ是等腰三角形.【解析】
(1)利用勾股定理先求出AC的长,继而根据已知条件即可求得答案;(2)延长QO交AD于点E,连接PE、PQ,先证明△AEO≌△CQO,从而得OE=OQ,AE=CQ=y,由垂直平分线的性质可得PE=PQ,即,在Rt⊿EDP中,有,在Rt⊿PCQ中,,继而可求得答案;(3)分CQ=CO,OQ=CQ,OQ=OC三种情况分别进行讨论即可求得答案.【详解】(1)∵四边形ABCD是长方形,∴∠ABC=90°,∴,∴OB=OA=OC=;(2)延长QO交AD于点E,连接PE、PQ,∵四边形ABCD是长方形,∴CD=AB=6,AD=BC=8,AD//BC,∴∠AEO=∠CQO,在△COQ和△AOE中,,∴△AEO≌△CQO(SAS),∴OE=OQ,AE=CQ=y,∴ED=AD-AE=8-y,∵OP⊥OQ,∴OP垂直平分EQ,∴PE=PQ,∴,∵PD=x,∴CP=CD-CP=6-x,在Rt⊿EDP中,,在Rt⊿PCQ中,,∴,∴;(3)分三种情况考虑:①如图,若CQ=CO时,此时CQ=CO=5;②如图,若OQ=CQ时,作OF⊥BC,垂足为点F,∵OB=OC,OF⊥BC,∴BF=CF=BC=4,∴,∵OQ=CQ,∴,∴,∴,∴;③若OQ=OC时,此时点Q与点B重合,点P在DC延长线上,此情况不成立,综上所示,当或时,⊿OCQ是等腰三角形.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,一次函数的应用等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.23、(1);(2)证明见解析.【解析】
(1)由等边三角形的性质可得,,由旋
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度全国总代理合同:XX服装品牌全国市场总代理权授权书
- 台球馆装修合同模板及明细
- 2025年度塑胶颗粒行业人才培训与引进合作协议
- 2025年度房屋租赁房东合同-租赁合同风险防控指南
- 工厂水电安装协议范本
- 2025年度多式联运货物保险合同样本
- 2025年度医疗机构执业药师聘用合同及药品安全培训协议
- 2025年度手电动车转让协议书:手电动车品牌加盟连锁经营合同
- 2025年度互联网干股合作协议范本
- 2025年度个人银行卡领用与高端商务服务合同
- 护理核心制度及重点环节-PPT课件
- 夹套管现场施工方法
- 部编版语文五年级下册形近字组词参考
- 经销商授权协议合同书(中英文对照)
- 第三章走向混沌的道路
- 化探野外工作方法及要求
- 2006年事业单位工资改革工资标准表及套改表2
- 江苏省特种设备安全条例2021
- 青岛海洋地质研究所公开招聘面试答辩PPT课件
- 常见导管的固定与维护PPT课件
- 白龟湖湿地公园调研报告
评论
0/150
提交评论