山东省日照专用2024届八年级数学第二学期期末检测试题含解析_第1页
山东省日照专用2024届八年级数学第二学期期末检测试题含解析_第2页
山东省日照专用2024届八年级数学第二学期期末检测试题含解析_第3页
山东省日照专用2024届八年级数学第二学期期末检测试题含解析_第4页
山东省日照专用2024届八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照专用2024届八年级数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列变形中,正确的是()A. B.C. D.2.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A. B. C. D.3.在函数y=1x-1A.x>1 B.x<1 C.x≠1 D.x=14.若与最简二次根式是同类二次根式,则m的值为()A.5 B.6 C.2 D.45.某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是()尺码数人数A. B. C. D.6.用反证法证明命题“四边形中至少有一个角不小于直角”时应假设(

)A.没有一个角大于直角

B.至多有一个角不小于直角C.每一个内角都为锐角

D.至少有一个角大于直角7.如图,在平行四边形中,按以下步骤作图:(1)分别以A、B为圆心,以大于AB为半径画弧,两弧相交于P、Q两点;(2)连接PQ分别交AB、CD于EF两点;(3)连接AE、BE,若DC=5,EF=3,则△AEB的面积为()A.15 B. C.8 D.108.如图,在平行四边形ABCD中,AB=4,AD=6,∠D=120°,延长CB至点M,使得BM=BC,连接AM,则AM的长为()A.3.5 B. C. D.9.如图,∠BAC=90°,四边形ADEB、BFGC、CHIA均为正方形,若

S四边形ADEB=6,S四边形BFGC=18,四边形CHIA的周长为()A.4 B.8 C.12 D.810.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.11.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为()A.1 B.2 C.3 D.412.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90° B.AC=BD C.∠OBC=∠OCB D.AO⊥BD二、填空题(每题4分,共24分)13.已知方程的一个根为2,则________.14.如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.15.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.16.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为_____________17.化简:___________.18.当x≤2时,化简:=________三、解答题(共78分)19.(8分)(江苏省泰州市海陵区2018年中考适应性训练数学试题)如图,直线AB:y=−x−b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.20.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.21.(8分)在平面直角坐标系中,正比例函数与反比例函数为的图象交于两点若点,求的值;在的条件下,x轴上有一点,满足的面积为,水点坐标;若,当时,对于满足条件的一切总有,求的取值范围.22.(10分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。23.(10分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.24.(10分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.(1)写出点、、的坐标,并在右图中画出;(2)求的面积.25.(12分)如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.26.如图,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点为圆心,大于二分之一长为半径画弧,两弧交于点,连接并延长交于点,连接.(1)四边形是__________;(填矩形、菱形、正方形或无法确定)(2)如图,相交于点,若四边形的周长为,求的度数.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【点睛】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.2、B【解析】

观察所给程序的运算过程,根据前两次运算结果小于或等于95、第三次运算结果大于95,列出关于x的不等式组;先求出不等式组中三个不等式的解集,再取三个不等式的解集的公共部分,即为不等式组的解集.【详解】由题意可得,解不等式①得,x≤47,解不等式②得,x≤1,解不等式③得,x>11,故不等式组的解集为11<x≤1.故选B.【点睛】此题考查一元一次不等式的应用,关键是根据“操作进行了三次才停止”列出满足题意的不等式组;3、C【解析】试题解析:根据题意,有x-1≠0,解得x≠1;故选C.考点:1.函数自变量的取值范围;2.分式有意义的条件.4、C【解析】

直接化简二次根式,进而利用同类二次根式的定义分析得出答案.【详解】∵,与最简二次根式是同类二次根式,

∴m+1=3,

解得:m=1.

故选:C.【点睛】考查了同类二次根式,正确把握同类二次根式的定义是解题关键.5、C【解析】

众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了10次,次数最多,所以众数为1,

一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.

故选:C.【点睛】本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.6、C【解析】

至少有一个角不小于90°的反面是每个内角都为锐角,据此即可假设.【详解】解:反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.故选C.【点睛】本题结合角的比较考查反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7、B【解析】

利用基本作图得到EF⊥AB,再根据平行四边形的性质得到AB=CD=5,然后利用三角形面积公式计算.【详解】解:由作图得EF垂直平分AB,即EF⊥AB,∵四边形ABCD为平行四边形,∴AB=CD=5,∴△AEB的面积=×5×3=.故选:B.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8、B【解析】

作AN⊥BM于N,求出∠BAN=30°,由含30°角的直角三角形的性质得出BN、AN的长,由勾股定理即可得出答案.【详解】作AN⊥BM于N,如图所示:

则∠ANB=∠ANM=90°,

∵四边形ABCD是平行四边形,

∴BC=AD=6,∠ABC=∠D=120°,

∴∠ABN=60°,

∴∠BAN=30°,

∴BN=AB=2,AN=,∵BM=BC=3,

∴MN=BM-BN=1,

∴AM=,故选:B.【点睛】本题考查了平行四边形的性质、含30°角的直角三角形的性质以及勾股定理等知识;熟练掌握平行四边形的性质和含30°角的直角三角形的性质是解题的关键.9、B【解析】

外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.【详解】解:根据勾股定理我们可以得出:

AB2+AC2=BC2

S正方形ADEB=AB2=6,S正方形BFGC=BC2=18,S正方形CHIA=AC2=18-6=12,∴AC=,∴四边形CHIA的周长为==8

故选:B.【点睛】本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.10、B【解析】

根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.11、B【解析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.12、D【解析】

依据矩形的定义和性质解答即可.【详解】∵ABCD为矩形,∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;∴OB=OC,∴∠OBC=∠OCB,故C正确,与要求不符.当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.故选:D.【点睛】本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.二、填空题(每题4分,共24分)13、【解析】

把x=2代入原方程,得到一个关于k的方程,求解可得答案.【详解】解:把x=2代入方程3x2+kx-2=0得3×4+2k-2=0,

解得k=-1.

故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14、6【解析】

作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy.【详解】作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy=6.故答案为:6【点睛】本题考核知识点:反比例函数意义.解题关键点:熟记反比例函数的意义.15、1【解析】分析:根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.详解:∵四边形ABCD是矩形,点A的坐标为(2,1),∴点D的横坐标为2,点B的纵坐标为1,当x=2时,y==3,当y=1时,x=6,则AD=3-1=2,AB=6-2=4,则矩形ABCD的周长=2×(2+4)=1,故答案为1.点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.16、3【解析】∵AB=AC,AD平分∠BAC,∴D是BC中点.∵E是AB的中点,∴DE是△ABC的中位线,.17、【解析】

根据二次根式的乘法,可得第二个空的答案;【详解】;故答案为:.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18、2-x【解析】

,∵x≤2,∴原式=2-x.三、解答题(共78分)19、(1)(0,6);(2)y=3x+6;(3)−<m<4.【解析】【分析】(1)直接将点的坐标代入可得;(2)用待定系数法可得;(3)把y=2分别代入直线AB和直线BC的解析式,确定关键点的坐标,结合图形,从而求出m的取值范围.【详解】(1)将点A(6,0)代入直线AB的解析式可得:0=−6−b,解得:b=−6,∴直线AB的解析式为y=−x+6,∴B点坐标为(0,6).(2)∵OB∶OC=3∶1,∴OC=2,∴点C的坐标为(−2,0),设BC的解析式是y=kx+6,则0=−2k+6,解得:k=3,∴直线BC的解析式是:y=3x+6.(3)把y=2代入y=−x+6得x=4;把y=2代入y=3x+6中得x=,结合图象可知m的取值范围是.故正确答案为:(1)(0,6);(2)y=3x+6;(3)−<m<4.【点睛】本题考核知识点:一次函数的图象.本题解题关键是:熟练运用待定系数法求解析式,求关键点坐标,再数结合,可分析出答案.20、(1)证明见解析;(2)见解析.【解析】

(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【详解】(1)证明∵AC=9

AB=12

BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.【点睛】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.21、(1);(2)或;(3)【解析】

(1)将点分别代入正比例函数解析式以及反比例函数解析式,即可求出的值;(2)联立正反比例函数解析式求出点B的坐标,可得原点O为的中点,再根据三角形面积公式求解即可;(3)当时,,根据题意得出,再根据k与m的关系求解即可.【详解】解:将代入和解得(2)联立,解得:或,,∴原点O为的中点,,,或;,,当时,对于的一切总有,,,∵,∴,.【点睛】本题考查了数形结合的数学思想.解此类题型通常与不等式结合.利用图象或解不等式的方法来解题是关键.22、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.【解析】

(1)根据加权平均数的定义与性质即可求解判断;(2)①根据直方图即可求解;②根据直方图判断甲乙所在的分段,即可判断.【详解】解:(1)由题意得,(分)(分)∵∴应该录取乙。(2)①30②由频数分布直方图可知成绩最高一组分数段中有1人,而分,所以乙是第一名,一定被录取;在一组有5人,其中有2人被录用,分,可确定甲在本组中,但不能确定甲在本组中排第几名,所以甲不一定能被录用。【点睛】此题主要考查统计调查的应用,解题的关键是熟知加权平均数的求解与性质.23、(1)证明见解析;(2)证明见解析.【解析】

(1)由三角形中位线定理可得,,由,可得,即可证四边形是平行四边形;(2)由平行四边形的性质可得,可得.【详解】证明:(1)是的中位线,,,,且四边形是平行四边形;(2)四边形是平行四边形,且【点睛】本题主要考查了平行四边形的判定和性质,以及三角形中位线定理,关键是掌握对角线互相平分的四边形是平行四边形,两组对边分别平行的四边形是平行四边形.24、(1)、、,作图见解析;(2)6【解析】

(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用三角形面积公式计算.【详解】解:(1)如图,△A1B1C1为所作,∴、、;(2);【点睛】本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.25、(1)证明见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论