四川绵阳外国语学校2024届数学八年级下册期末联考试题含解析_第1页
四川绵阳外国语学校2024届数学八年级下册期末联考试题含解析_第2页
四川绵阳外国语学校2024届数学八年级下册期末联考试题含解析_第3页
四川绵阳外国语学校2024届数学八年级下册期末联考试题含解析_第4页
四川绵阳外国语学校2024届数学八年级下册期末联考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川绵阳外国语学校2024届数学八年级下册期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,,则()A. B. C.2 D.2.等式成立的条件是()A. B. C.x>2 D.3.关于的不等式组恰好有四个整数解,那么的取值范围是()A. B. C. D.4.如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为A. B.C. D.5.如图,矩形中,对角线交于点.若,则的长为()A. B. C. D.6.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有()A.0个 B.1个 C.2个 D.3个7.函数y=ax﹣a的大致图象是()A. B. C. D.8.下列几组数中,不能作为直角三角形三边长度的是()A.3,4,5 B.5,7,8 C.8,15,17 D.1,9.如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是()A. B. C. D.10.如图,在平行四边形中,和的平分线交于边上一点,且,,则的长是()A.3 B.4 C.5 D.2.5二、填空题(每小题3分,共24分)11.据统计,2019年全国高考报名人数达10310000人,比去年增加了560000,其中数据10310000用科学计数法表示为_________12.如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.13.函数中自变量x的取值范围是.14.图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.15.若实数a、b满足,则=_____.16.已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.17.如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是_______.18.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出①AB=__________;②CD=_______________(提示:过A作CD的垂线);③BC=_______________.三、解答题(共66分)19.(10分)阅读下列材料,完成(1)、(2)小题.在平面直角坐标系中,已知轴上两点,的距离记作,如果,是平面上任意两点,我们可以通过构造直角三角形来求间的距离,如图1,过点、分别向轴、轴作垂线,和,,垂足分别是,,,,直线交于点,在中,,∴∴,我们称此公式为平面直角坐标系内任意两点,间的距离公式(1)直接应用平面内两点间距离公式计算点,的距离为_________(2)如图2,已知在平面直角坐标系中有两点,,为轴上任意一点,求的最小值20.(6分)(1)计算(结果保留根号);(2)分析(1)的结果在哪两个整数之间?21.(6分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:数量x(千克)12345…售价y(元)2+0.14+0.26+0.38+0.410+0.5…(1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;(2)这个人若卖出50千克的绿橙,售价为多少元?22.(8分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.(1)求3、4两月房价平均每月增长的百分率;(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?23.(8分)如图,是正方形的对角线,.边在其所在的直线上平移,将通过平移得到的线段记为,连接、,并过点作,垂足为,连接、.(1)请直接写出线段在平移过程中,四边形是什么四边形;(2)请判断、之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设,,求与之间的函数关系式.24.(8分)端午节假期,某商场开展促销活动,活动规定:若购买不超过100元的商品,则按全额交费;若购买超过100元的商品,则超过100元的部分按8折交费.设商品全额为x元,交费为y元.(1)写出y与x之间的函数关系式.(2)某顾客在-一次消费中,向售货员交纳了300元,那么在这次消费中,该顾客购买的商品全额为多少元?25.(10分)如图,在△ABC中,AB=10,BC=8,AC=1.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.(1)判断四边形DECF的形状,并证明;(2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.26.(10分)如图,在▱ABCD中,点O是对角线AC、BD的交点,AD⊥BD,且AB=10,AD=6,求AC的长.(结果保留根号)

参考答案一、选择题(每小题3分,共30分)1、A【解析】

如图,延长GH交AD于点M,先证明△AHM≌△FHG,从而可得AM=FG=1,HM=HG,进而得DM=AD-AM=2,继而根据勾股定理求出GM的长即可求得答案.【详解】如图,延长GH交AD于点M,∵四边形ABCD、CEFG是矩形,∴AD=BC=3,CG=EF=3,FG=CE=1,∠CGF=90°,∠ADC=90°,∴DG=CG-CD=3-1=2,∠ADG=90°=∠CGF,∴AD//FG,∴∠HAM=∠HFG,∠AMH=∠FGH,又AH=FH,∴△AHM≌△FHG,∴AM=FG=1,HM=HG,∴DM=AD-AM=3-1=2,∴GM=,∵GM=HM+HG,∴GH=,故选A.【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定与性质,正确添加辅助线,熟练掌握相关知识是解题的关键.2、C【解析】

直接利用二次根式的性质得出关于x的不等式进而求出答案.【详解】解:∵等式=成立,∴,解得:x>1.故选:C.【点睛】此题主要考查了二次根式的性质,正确解不等式组是解题关键.3、C【解析】

可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等式,可求得m的取值范围.【详解】解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴-1≤m<0,故选C.【点睛】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.4、B【解析】

设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】设菱形的高为h,有三种情况:①当P在AB边上时,如图1,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.5、B【解析】

由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=AC,BO=BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.6、D【解析】

依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【详解】解:∵四边形ABCD是正方形,

∴∠BAC=∠DAC=45°.

在△APE和△AME中,

∠BAC=∠DAC

AE=AE

∠AEP=∠AEM,

∴△APE≌△AME(ASA),故①正确;

∴PE=EM=PM,

同理,FP=FN=NP.

∵正方形ABCD中,AC⊥BD,

又∵PE⊥AC,PF⊥BD,

∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE

∴四边形PEOF是矩形.

∴PF=OE,

∴PE+PF=OA,

又∵PE=EM=PM,FP=FN=NP,OA=AC,

∴PM+PN=AC,∴PM+PN=BD;故②正确;

∵四边形ABCD是矩形,

∴AC⊥BD,

∴∠AOB=90°,

∵PE⊥AC,PF⊥BD,

∴∠OEP=∠EOF=∠OFP=90°,

∴四边形PEOF是矩形,

∴OE=PF,OF=PE,

在直角△OPF中,OE²+PE²=PO²,

∴PE²+PF²=PO²,故③正确;∴正确的有3个,故选:D【点睛】本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.7、C【解析】

将y=ax-a化为y=a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A、B、D中的图象都不过点(1,0),所以C项图象正确.故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.8、B【解析】

根据勾股定理的逆定理依次判断各项后即可解答.【详解】选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.故选B.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.9、C【解析】

由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,

∴OA=OC,

∵点E,F分别是边AD,AB的中点,

∴EF∥BD,

∴△AFH∽△ABO,

∴AH:AO=AF:AB,故选:C【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.10、D【解析】

由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=∠ABC,∠DCE=∠BCE=∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴BC=,∴AB=BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.二、填空题(每小题3分,共24分)11、1.031×1【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将10310000科学记数法表示为:1.031×1.故答案为:1.031×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、58,5【解析】

根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的14,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4【详解】∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴S△ADC=S△ABC=12S矩形ABCD=12×20=∴S△AOB=S△BCO=12S△ABC=12×10=∴S△ABO1=12S△AOB=12×5=∴S△ABO2=12S△ABO1=5S△ABO3=12S△ABO2=5S△ABO4=12S△ABO3=5∴S平行四边形AO4C5B=2S△ABO4=2×516=5平行四边形AOnCn+1B的面积为52故答案为:58;5【点睛】本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.13、【解析】

求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.【详解】解:要使在实数范围内有意义,必须.14、【解析】

过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.【详解】解:过作,正方形,,,,,,且,,,,,当时,的最小值为故答案为:【点睛】本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.15、﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.16、1或3【解析】

数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值【详解】解:连接AC和BD交于一点O,四边形ABCD为菱形垂直平分AC,点P在线段AC的垂直平分线上,即BD上在直角三角形APO中,由勾股定理得如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3故答案为:1或3【点睛】本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.17、(2,2).【解析】

解:过点B作DE⊥OE于E,∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,∴∠CAO=30°.又∵OC=2,∴AC=1.∴OB=AC=1.又∵∠OBC=∠CAO=30°,DE⊥OE,∠CBA=90°,∴∠OBE=30°.∴OE=2,BE=OB·cos∠OBE=2.∴点B的坐标是(2,2).故答案为:(2,2).18、162【解析】

根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.【详解】①当t=1时,点P到达A处,即AB=1.故答案是:1;②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=,∴CD=6,故答案是:6;③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,则BC=2,故答案是:2.【点睛】考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.三、解答题(共66分)19、(1)5;(2)【解析】

(1)利用两点间的距离公式解答;(2)作点关于轴对称的点,连接,交轴于,点即为所求,再利用两点间的距离公式求解即可。【详解】解:(1)故答案为:5(2)如图2,作点关于轴对称的点,连接,交轴于,点即为所求.∵∴∴∴的最小值为【点睛】本题考查了一次函数综合题.解答(2)题时,是根据“两点之间,线段最短”来找点P的位置的.20、(1);(2)【解析】

(1)先去括号,再将二次根式化简为最简二次根式,并合并;

(2)确认=27,再确认25<27<36,可得结论.【详解】解:原式,∴在和6之间.【点睛】本题考查了二次根式的加减混合运算和无理数的估算,熟练掌握二次根式的运算法则是关键.21、(1)y=2.1x;(2)这个人若卖出50千克的绿橙,售价为1元.【解析】

(1)根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可;(2)把x=50代入函数关系式即可.【详解】(1)设售价为y(元)与绿橙数量x(千克)之间的函数关系式为y=kx+b,由已知得,,解得k=2.1,b=0;∴y与x之间的函数关系式为y=2.1x;(2)当x=50时,y=2.1×50=1.答:这个人若卖出50千克的绿橙,售价为1元.【点睛】本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.22、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.【解析】

(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.【详解】解:(1)设3、4两月房价平均每月增长的百分率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:3、4两月房价平均每月增长的百分率为10%.(2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),选择第二种优惠总额=100×1.5×12×5+10000=19000(元).∵24000>19000,∴选择第一种方案更优惠.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.23、(1)四边形是平行四边形;(2)且,证明见解析;(3)见解析.【解析】

(1)根据平移的性质,可得PQ=BC=AD,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得函数关系式.【详解】(1)根据平移的性质可得,PQ=BC,∵四边形ABCD是正方形,∴BC=AD,BC∥AD,∴PQ=AD,PQ∥AD,∴四边形是平行四边形.(2)且.证明如下:①当向右平移时,如图,∵四边形是正方形,∴,.∵,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论