河北省保定市清苑区北王力中学2024年八年级数学第二学期期末综合测试试题含解析_第1页
河北省保定市清苑区北王力中学2024年八年级数学第二学期期末综合测试试题含解析_第2页
河北省保定市清苑区北王力中学2024年八年级数学第二学期期末综合测试试题含解析_第3页
河北省保定市清苑区北王力中学2024年八年级数学第二学期期末综合测试试题含解析_第4页
河北省保定市清苑区北王力中学2024年八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市清苑区北王力中学2024年八年级数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,AB=8,AD=6,过点D作直线m∥AC,点E、F是直线m上两个动点,在运动过程中EF∥AC且EF=AC,四边形ACFE的面积是()A.48 B.40 C.24 D.302.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个3.下列曲线中能够表示y是x的函数的有()A.①②③ B.①②④ C.①③④ D.②③④4.下列多项式能分解因式的是()A. B. C. D.5.如图,在平面直角坐标系中,反比例函数的图象经过,两点,,两点的纵坐标分别为3,1,若的中点为点,则点向左平移________个单位后落在该反比例函数图象上?()A. B.2 C.1 D.6.-(-6)等于()A.-6 B.6 C. D.±67.下列各式从左到右的变形为分解因式的是()A.x(x﹣y)=x2﹣xy B.x2+2xy+1=x(x+2y)+1C.(y﹣1)(y+1)=y2﹣1 D.x(x﹣3)+3(x﹣3)=(x+3)(x﹣3)8.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,89.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为,则可列方程()A. B.C. D.10.一元一次不等式组的解集在数轴上表示为().A. B.C. D.11.如图,点是矩形的对角线的中点,点是边的中点,若,,则的长为()A.3 B.4 C.4.5 D.512.以下四组数中的三个数作为边长,不能构成直角三角形的是()A.1,, B.5,12,13 C.32,42,52 D.8,15,17.二、填空题(每题4分,共24分)13.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.14.在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.15.A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.16.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.17.如图,在矩形ABCD中,AD=5,AB=3,点E是边BC上一点,若ED平分∠AEC,则ΔABE的面积为________.18.如图,已知,AD平分于点E,,则BC=___cm。三、解答题(共78分)19.(8分)已知,,是的三边,且满足,试判断的形状,并说明理由.20.(8分)解不等式组,并将不等式组的解集在下面的数轴上表示出来:.21.(8分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.(1)求实际每年绿化面积是多少万平方米(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?22.(10分)已知抛物线,与轴交于、,(1)若,时,求线段的长,(2)若,时,求线段的长,(3)若一排与形状相同的抛物线在直角坐标系上如图放置,且每相邻两个的交点均在轴上,,若之间有5个它们的交点,求的取值范围.23.(10分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:24.(10分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-12x和y=mx(m>(1)当AB=BC时,求m的值。(2)连结OA,OD.当OD平方∠AOC时,求△AOD的周长.25.(12分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y=(k≠0)的图象经过点H,则k=;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.计算:()0﹣|﹣2|﹣.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据题意在运动过程中EF∥AC且EF=AC,所以可得四边形ACFE为平行四边形,因此计算面积即可.【详解】根据在运动过程中EF∥AC且EF=AC四边形ACFE为平行四边形过D作DM垂直AC于点M根据等面积法,在中可得四边形ACFE为平行四边形的高为故选A【点睛】本题主要考查平行四边形的性质,关键在于计算平行四边形的高.2、C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选C.考点:平行四边形的判定3、A【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之相对应,据此即可确定哪一个是函数图象.【详解】解:①②③的图象都满足对于x的每一个取值,y都有唯一确定的值与之相对应,故①②③的图象是函数,④的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之相对应,故D不能表示函数.故选:A.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、B【解析】

直接利用分解因式的基本方法分别分析得出答案.【详解】解:A、x2+y2,无法分解因式,故此选项错误;

B、x2y-xy2=xy(x-y),故此选项正确;

C、x2+xy+y2,无法分解因式,故此选项错误;

D、x2+4x-4,无法分解因式,故此选项错误;

故选:B.【点睛】本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a2-b2=(a+b)(a-b);②a2±2ab+b2=(a±b)2,第三步:再考虑用其它方法,如分组分解法等.5、D【解析】

根据题意可以推出A,B两点的坐标,由此可得出M点的坐标,设平移n个单位,然后表示出平移后的坐标为(2-n,2),代入函数解析式,即可得到答案.【详解】由题意可得A(1,3),B(3,1),∴M(2,2),设M点向左平移n个单位,则平移后的坐标为(2-n,2),∴(2-n)×2=3,∴n=.故选:D.【点睛】本题主要考查了中点坐标的计算,反比例函数,细心分析即可.6、B【解析】

根据相反数的概念解答即可.【详解】解:-(-1)=1.故选:B.【点睛】本题主要考查相反数的概念,属于应知应会题型,熟知定义是关键.7、D【解析】

根据因式分解的定义:将多项式和的形式化为整式积的形式,判断即可.【详解】解:A、没把一个多项式转化成几个整式积,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.【点睛】此题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.8、B【解析】

首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【详解】解:把已知数据按从小到大的顺序排序后为5元,1元,1元,7元,8元,9元,10元,∴中位数为7∵1这个数据出现次数最多,∴众数为1.故选B.【点睛】本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.9、B【解析】

根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x.【详解】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1.故选:B.【点睛】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.10、A【解析】

根据不等式解集的表示方法即可判断.【详解】解:解不等式①得:x>-1,

解不等式②得:x≤2,

∴不等式组的解集是-1<x≤2,

表示在数轴上,如图所示:

故选:A.【点睛】此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.11、D【解析】

由三角形的中位线定理可得CD=AB=6,由勾股定理可求AC的长,即可求OB的长.【详解】∵四边形ABCD是矩形

∴AB=CD,∠ABC=90°,AO=OC=OB

∵AO=OC,AM=MD

∴CD=2OM=6=AB,

∴AC==10

∴OB=5

故选:D.【点睛】此题考查矩形的性质,三角形中位线定理,勾股定理,熟练运用矩形的性质是解题的关键.12、C【解析】

分别求出两小边的平方和和长边的平方,看看是否相等即可.【详解】A、∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;B、∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项不符合题意;C、∵92+162≠52,∴以32,42,52为边不能组成直角三角形,故本选项符合题意;D、∵82+152=172,∴8、15、17为边能组成直角三角形,故本选项不符合题意;故选C.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形二、填空题(每题4分,共24分)13、1【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,

∴D′F=BF,

设D′F=x,则AF=16-x,

在Rt△AFD′中,(16-x)2=x2+82,

解之得:x=6,

∴AF=AB-FB=16-6=10,故答案为:1.【点睛】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.14、1【解析】

先计算出“统计与概率”内容所占的百分比,再乘以10即可.【详解】解:依题意,得(1-45%-5%-40%)×10=10%×10=1.故答案为1.【点睛】本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15、23%【解析】

根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.【详解】解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),

B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,再根据题意可得:[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,整理组成方程组得:x+3y+6z=3359x+12y+19z=1240解得:z=355-3y7∵20≤x≤30,20≤y≤30,∴2657(约37.85则z=40或代入可得:x=20y=25z=40,或者x=21y=∵x、y、z均为整数,则只有x=20y=25则把起初A、B两瓶酒精混合后的浓度为:2000×20%+3000故答案为:23%.【点睛】本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.16、【解析】

由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°-15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°-60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=故答案为75°.【点睛】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.17、1【解析】

首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED=∠CED,∴∠EDA=∠AED,∴AD=AE=5,∴BE=AE2∴△ABE的面积=12BE•AB=12×4×3=故答案为:1.【点睛】本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.18、1【解析】

过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,然后求出CD、BD的长度,即可得解.【详解】解:如图,过点D作DE⊥AB于E,

∵点D到AB的距离等于5cm,

∴DE=5cm,

∵AD平分∠BAC,∠C=90°,

∴DE=CD=5cm,

∵BD=2CD,

∴BD=2×5=10cm,

∴BC=CD+BD=5+10=1cm.

故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.三、解答题(共78分)19、△ABC是等腰三角形;理由见解析【解析】

首先将已知等式进行因式分解,然后由三角形三边都大于0,解其方程得到,即可判定.【详解】∵,,是的三边,都大于0∴∴△ABC是等腰三角形.【点睛】此题主要考查因式分解的应用,利用三角形三边都大于0,解其方程即可解题.20、,将不等式组的解集在数轴上表示见解析.【解析】

分别解两个不等式得两个不等式的解集,然后根据确定不等式组解集的方法确定解集,最后利用数轴表示其解集.【详解】由(1)可得由(2)可得∴原不等式组解集为【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21、(1)实际每年绿化面积为75万平方米;(2)平均每年绿化面积至少还要增加37.5万平方米.【解析】

(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米.根据“实际每年绿化面积是原计划的1.5倍,这样可提前3年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】解:(1)设原计划每年绿化面积为x万平方米,,解得x=50,经检验,x=50是此分式方程的解.∴1.5x=75.答:实际每年绿化面积为75万平方米.(2)设平均每年绿化面积至少还要增加a万平方米,75×3+2(75+a)≥450,解得a≥37.5.答:平均每年绿化面积至少还要增加37.5万平方米.【点睛】此题考查一元一次不等式的应用,分式方程的应用,解题关键在于列出方程22、(1)6;(2)6;(3)【解析】

(1)将,代入,求出与x轴两个交点的的横坐标,即可确定AB的长.(2)将,代入,化简得y,令y=0,求出与x轴两个交点的的横坐标,即可确定AB的长.(3)令,解得,然后确定AB的长,再根据之间有5个交点,列出不等式,求解不等式即可.【详解】解:(1)∵,,∴,令,得,,∴.(2),时,令,,,∴,∴线段的长为6.(3)令,,,此时的长,∵之间有5个交点,∴,∴.【点睛】本题考查了二次函数与x轴交点及交点间的距离,解题的关键在于认真分析,逐步解答,才会发现解答思路.23、见解析.【解析】

根据中位线定理和已知,易证明△NMP是等腰三角形,根据等腰三角形的性质即可得到结论.【详解】解:证明:∵是中点,是中点,∴是的中位线,∴,∵是中点,是中点,∴是的中位线,∴,∵,∴,∴是等腰三角形,∴.【点睛】此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.24、(1)4(4)10+45【解析】

(1)把A点坐标代入反比例函数式y=-12x,求出a值,则A的横坐标可知,由条件知AB=BC,求出OC的长度,则求出D点的坐标,把D点坐标代入y=m(4)现知A点坐标,则可求出OA的长度,根据角平分线的定义和两直线平行内错角相等,等量代换得出∠ADO=∠AOD,所以AO=AD=3,则OC的长度可求,现知DC的长度,用勾股定理即可求出OD的长度,则△AOD的周长可求.【详解】(1)当y=4时,a=-124=-∴OB=1.∵矩形ABCD,且AB=BC,∴AB=BC=CD=4,∴OC=1,∴D(1,4),∴m=4.(4)∵∠ABO=90°,A(-1,4),∴OA=3.∵OD平分∠AOC,∴∠AOD=∠DOC.∵AD∥BC,∴∠ADO=∠DOC,∴∠ADO=∠AOD,∴DA=OA=3,∴OC=4.∵∠OCD=90°,∴OD=O∴△AOD的周长是10+45.【点睛】本题考查了反比例函数与四边形的综合,灵活应用矩形的性质及等角对等边这一性质求线段长是解题的关键.25、(1)(﹣,3)(2)(3)(,)或(﹣,5)或(,﹣)【解析】

(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论