2024年福建省福州市鼓楼区福州屏东中学八年级数学第二学期期末检测试题含解析_第1页
2024年福建省福州市鼓楼区福州屏东中学八年级数学第二学期期末检测试题含解析_第2页
2024年福建省福州市鼓楼区福州屏东中学八年级数学第二学期期末检测试题含解析_第3页
2024年福建省福州市鼓楼区福州屏东中学八年级数学第二学期期末检测试题含解析_第4页
2024年福建省福州市鼓楼区福州屏东中学八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年福建省福州市鼓楼区福州屏东中学八年级数学第二学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()A.10 B.16 C.20 D.362.下列各组数中不能作为直角三角形的三边长的是()A.3,4,5 B.13,14,15 C.5,12,13 D.15,8,173.已知一个多边形的每一个外角都是,则该多边形是()A.十二边形 B.十边形 C.八边形 D.六边形.4.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,3,2 B.1,2,5C.5,12,13 D.1,2,25.在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是()A. B.C. D.6.已知,则的关系是()A. B. C. D.7.若关于x的分式方程无解,则m的值为()A.一l.5 B.1 C.一l.5或2 D.一0.5或一l.58.将点先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A. B. C. D.9.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A.1个 B.2个 C.3个 D.4个10.化简的结果是A.-2 B.2 C.-4 D.411.如果一个多边形的内角和等于720°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形12.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.99二、填空题(每题4分,共24分)13.如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.14.直线与轴的交点坐标是________________.15.关于的一元二次方程有两个不相等的实数根,则的取值范围是_______.16.若代数式有意义,则x的取值范围是______。17.如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.18.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.三、解答题(共78分)19.(8分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.(2)归纳证明证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.20.(8分)如图,正方形中,为上的点,是的延长线的点,且,过作垂足为交于点.(1)求证:;(2)若,求的长.21.(8分)如图,四边形的对角线,交于点,、是上两点,,,.(1)求证:四边形是平行四边形.(2)当平分时,求证:.22.(10分)如图,点A在的边ON上,于点B,,于点E,,于点C.求证:四边形ABCD是矩形.23.(10分)如图,在平面直角坐标系中,矩形的顶点在轴的正半轴上,顶点在轴的正半轴上,是边上的一点,,.反比例函数在第一象限内的图像经过点,交于点,.(1)求这个反比例函数的表达式,(2)动点在矩形内,且满足.①若点在这个反比例函数的图像上,求点的坐标,②若点是平面内一点,使得以、、、为顶点的四边形是菱形,求点的坐标.24.(10分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?25.(12分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.26.为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.(1)求这两年我县投入城市公园建设经费的年平均增长率;(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?

参考答案一、选择题(每题4分,共48分)1、C【解析】

点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=AB•BC=×4×5=10∴矩形ABCD的面积=2S=20故选:C.【点睛】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.2、B【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.【详解】解:A选项中,,∴能构成直角三角形;B选项中,,∴不能构成直角三角形;C选项中,,∴能构成直角三角形;D选项中,,∴能构成直角三角形;故选B.【点睛】本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.3、B【解析】

多边形的外角和是360°,依此可以求出多边形的边数.【详解】解:∵一个多边形的每个外角都等于36°,

∴多边形的边数为360°÷36°=1.

故选:B.【点睛】本题考查多边形的外角和定理.熟练掌握多边形的外角和定理:多边形的外角和是360°是解题的关键.4、D【解析】试题分析:A、∵12+(3)2=22,∴能组成直角三角形;B、∵12+22=(5)2,∴能组成直角三角形;C、∵52+122=132,∴能组成直角三角形;D、∵12+(2)2≠(2)2,∴不能组成直角三角形.故选D.考点:勾股定理的逆定理.5、A【解析】

确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.【详解】函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,所以一次函数的图象经过一、二、四象限,故选A.【点睛】考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.6、D【解析】

根据a和b的值去计算各式是否正确即可.【详解】A.,错误;B.,错误;C.,错误;D.,正确;故答案为:D.【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.7、D【解析】方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①①∵当2m+1=0时,此方程无解,∴此时m=-0.2,②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.当x=0时,代入①得:(2m+1)×0=-6,此方程无解;当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.8、C【解析】

根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【详解】解:将点P(-2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,

则点Q的坐标为(-2+3,3-4),即(1,-1),

故选:C.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9、D【解析】

分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。故选:D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10、B【解析】故选:B11、C【解析】试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是1.故选C.考点:多边形内角与外角.12、C【解析】

解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.二、填空题(每题4分,共24分)13、54【解析】

由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.【详解】解:∵20m2,30m2的两个矩形是等宽的,∴20m2,30m2的两个矩形的长度比为2:3,∴第四块土地的面积==54m2,故答案为:54【点睛】本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.14、【解析】

根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.【详解】根据题意,得当时,,即与轴的交点坐标是故答案为.【点睛】此题主要考查一次函数的性质,熟练掌握,即可解题.15、q<1【解析】

解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<1.故答案为q<1.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.16、x>5【解析】

若代数式有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.【详解】若代数式有意义,则≠0,得出x≠5.根据根式的性质知中被开方数x-5≥0则x≥5,由于x≠5,则可得出x>5,答案为x>5.【点睛】本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.17、1【解析】

根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.【详解】解:∵四边形ABCD是正方形,∴∠ADC=90°,CD=AD,∵△DCE是正三角形,∴DE=DC=AD,∠CDE=∠DEC=60°,∴△ADE是等腰三角形,∠ADE=90°+60°=150°,∴∠DAE=∠DEA==15°,同理可得:∠CBE=∠CEB=15°,∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,故答案为:1.【点睛】此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.18、【解析】

根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.【详解】∵△ABC的三条中位线组成△A1B1C1,∴A1B1=AC,B1C1=AB,A1C1=BC,∴△A1B1C1的周长=△ABC的周长=×3=,依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,则△A5B5C5的周长为=,故答案为.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.三、解答题(共78分)19、(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【解析】

(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.

(2)证明过程同(1).

(3)由AB=5即△ABC为等边三角形可求得BD的长.连接CE,由(2)可求∠BCE=90°,故在Rt△BCE中,由勾股定理可求CE的长.又由(2)可得BP=CE,由DP=BP-BD即求得DP的长.【详解】解:(1)∵菱形ABCD中,∠ABC=60°

∴AB=BC=CD=AD,∠ADC=∠ABC=60°

∴△ABC、△ACD是等边三角形

∴AB=AC,AC=CD,∠BAC=∠ACD=60°

∵△APE是等边三角形

∴AP=AE,∠PAE=60°

∴∠BAC-∠PAC=∠PAE-∠PAC

即∠BAP=∠CAE

在△BAP与△CAE中

∴△BAP≌△CAE(SAS)

∴BP=CE,∠ABP=∠ACE

∵BD平分∠ABC

∴∠ACE=∠ABP=∠ABC=30°

∴CE平分∠ACD

∴CE⊥AD

故答案为:BP=CE,CE⊥AD;(2)(1)中的结论仍成立,证明如下:设AD与CE交于点O∵四边形ABCD为菱形,且∠ABC=60°∴△ABC为等边三角形.∴AB=AC,∠BAC=60°∴∠BAP=∠CAE又∵ΔAPE为等边三角形∴AP=AE在△BAP与△CAE中∴△BAP≌ΔCAE(SAS)∴BP=CE∴∠ACE=∠ABP=30°又∵∠CAD=60°∠A0C=90°∴AD⊥CE;(3)连接CE,设AC与BD相交于点O

∵AB=5

∴BC=AC=AB=5

∴AO=AC=∴BO===

∴BD=2BO=5

∵∠BCE=∠BCA+∠ACE=90°,BE=13

∴CE===12

由(2)可知,BP=CE=12

∴DP=BP-BD=12-5故答案为:(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【点睛】本题考查菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.20、(1)见解析;(2)1【解析】

(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EFA,可得AF=BM;

(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【详解】(1)证明:四边形是正方形又(2)解:在中,【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用正方形的性质是本题的关键.21、(1)见解析;(2)见解析.【解析】

(1)首先证明△ADF≌△CBE,根据全等三角形的性质可得AD=CB,∠DAC=∠ACB,进而可得证明AD//CB,根据一组对边平行且等的四边形是平行四边形可得四边形ABCD是平行四边形;(2)首先根据角平分线的性质可得∠DAC=∠BAC,进而可得出AB=BC,再根据一组邻边相等的平行四边形是菱形可得结论【详解】解:(1),,,在中,,四边形是平行四边形.(2)平分,,,,,,平行四边形是菱形.【点睛】本题考查平行四边形的判定,熟练掌握平行四边形的性质及定义是解题关键.22、详见解析【解析】

根据全等三角形的判定和性质以及矩形的判定解答即可;【详解】证明:(证法不唯一)∵于点B,于点E,∴.在与中,∵∴.∴,∴.又∵,,∴.∴四边形ABCD是平行四边形.∵,∴四边形ABCD是矩形.【点睛】此题考查了矩形的判定与性质以及勾股定理.23、(1);(2)①;②【解析】

(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n),利用反比例函数图象上点的坐标特征可求出m的值,结合OC:CD=5:3可求出n值,再将m,n的值代入k=mn中即可求出反比例函数的表达式;(2)由三角形的面积公式、矩形的面积公式结合S△PAO=S四边形OABC可求出点P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的纵坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,2),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用勾股定理可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用勾股定理可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.综上,此题得解.【详解】解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n).∵点D,E在反比例函数的图象上,∴k=mn=(m−6)n,∴m=1.∵OC:CD=5:3,∴n:(m−6)=5:3,∴n=5,∴k=mn=×1×5=15,∴反比例函数的表达式为y=;(2)∵S△PAO=S四边形OABC,∴OA•yP=OA•OC,∴yP=OC=2.①当y=2时,=2,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,2).②由(1)可知:点A的坐标为(1,0),点B的坐标为(1,5),∵yP=2,yA+yB=5,∴yP≠,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,2).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(1−t)2+(2−0)2=52,解得:t1=6,t2=12(舍去),∴点P1的坐标为(6,2),又∵P1Q1=AB=5,∴点Q1的坐标为(6,1);(ii)当BP=AB时,(1−t)2+(5−1)2=52,解得:t3=1−2,t2=1+2(舍去),∴点P2的坐标为(1−2,2).又∵P2Q2=AB=5,∴点Q2的坐标为(1−2,−1).综上所述:点Q的坐标为(6,1)或(1−2,−1).【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、菱形的性质以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出点B的横纵坐标;(2)①由点P的纵坐标,利用反比例函数图象上点的坐标特征求出点P的坐标;②分AP=AB和BP=AB两种情况,利用勾股定理及菱形的性质求出点Q的坐标.24、(1)第一批荔枝每件进价为25元;(2)剩余的荔枝每件售价至少25元.【解析】

(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x-5)元,根据数量=总价÷单价结合第二批购进荔枝的件数是第一批购进件数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第二次购进荔枝的件数,设剩余的荔枝每件售价为y元,根据总利润=单件利润×销售数量结合第二批荔枝的销售利润不少于300元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批荔枝每件进价为元,则第二批荔枝每件进价为元,则有,解得:,经检验是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论