江苏无锡江阴市2024年八年级下册数学期末复习检测试题含解析_第1页
江苏无锡江阴市2024年八年级下册数学期末复习检测试题含解析_第2页
江苏无锡江阴市2024年八年级下册数学期末复习检测试题含解析_第3页
江苏无锡江阴市2024年八年级下册数学期末复习检测试题含解析_第4页
江苏无锡江阴市2024年八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏无锡江阴市2024年八年级下册数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各式中,是二次根式的是()A. B. C. D.2.下列图形是中心对称图形,但不是轴对称图形的是(

)A. B. C. D.3.平行四边形所具有的性质是()A.对角线相等 B.邻边互相垂直C.两组对边分别相等 D.每条对角线平分一组对角4.一次函数的图象经过原点,则k的值为A.2 B. C.2或 D.35.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3 B.﹣5x>﹣5y C.﹣ D.x2<y26.在直角坐标系中,若点Q与点P(2,3)关于原点对称,则点Q的坐标是(

)A.(-2,3) B.(2,-3) C.(-2,-3) D.(-3,-2)7.式子的值()A.在2到3之间 B.在3到4之间 C.在4到5之间 D.等于348.计算的结果为()A. B.±5 C.-5 D.59.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A. B.C. D.10.如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为()A. B. C. D.二、填空题(每小题3分,共24分)11.命题“如果a2=b2,那么a=b.”的否命题是__________.12.若关于x的分式方程=2a无解,则a的值为_____.13.如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为__________.14.在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与轴的交点坐标为__________.15.如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.16.己知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了____千米17.一次函数的图象如图所示,则关于的不等式的解集为__________.18.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=10,BC=16,则EF的长为___________.三、解答题(共66分)19.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?20.(6分)已知关于的分式方程的解是负数,求的取值范围.21.(6分)已知一个三角形的三边长分别为,求这个三角形的周长(要求结果化简).22.(8分)解不等式组:,并在数轴上表示出它的解集.23.(8分)4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?24.(8分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:ΔDFM≅ΔBEN;(2)四边形AMCN是平行四边形吗?请说明理由.25.(10分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:投进个数10个8个6个4个人数1个5人1人1人(1)请计算甲组平均每人投进个数;(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?26.(10分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据二次根式的定义逐一判断即可.【详解】A、是二次根式,故此选项正确;B、,根号下不能是负数,故不是二次根式;C、是立方根,故不是二次根式;D、,根号下不能是负数,故不是二次根式;故选A.【点睛】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2、A【解析】

根据轴对称图形和中心对称图形的定义解答即可.【详解】解:A.是中心对称图形,不是轴对称图形,故A符合题意;B.是中心对称图形,也是轴对称图形,故B不符合题意;C.是中心对称图形,也是轴对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不合题意.故选A.【点睛】本题考查了中心对称和轴对称图形的定义.解题的关键是掌握中心对称和轴对称图形的定义.3、C【解析】

根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.【详解】解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.故选:C.【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.4、A【解析】

把原点坐标代入解析式得到关于k的方程,然后解方程求出k,再利用一次函数的定义确定满足条件的k的值.【详解】把(0,0)代入y=(k+1)x+k1-4得k1-4=0,解得k=±1,而k+1≠0,所以k=1.故选A.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,于是解决此类问题时把已知点的坐标代入解析式求解.注意一次项系数不为零.5、D【解析】

根据不等式的性质分析判断即可.【详解】解:A、不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项错误;B、不等式x<y的两边同时乘以﹣5,不等号方向改变.即:﹣5x>﹣5y,故本选项错误;C、不等式x<y的两边同时乘以﹣,不等号方向改变.即:﹣x>﹣y,故本选项错误;D、不等式x<y的两边没有同时乘以相同的式子,故本选项正确.故选:D.【点睛】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6、C【解析】

关于原点对称的坐标的特点为,横坐标和纵坐标都是互为相反数,据此解答即可.【详解】解:∵Q与P(2,3)关于原点对称,则Q(-2,-3).故答案为:C【点睛】本题考查了平面直角坐标系中点的对称,掌握点的对称特点是解题的关键.7、C【解析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴4<<5,故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.8、D【解析】

根据二次根式的性质进行化简即可判断.【详解】解:=1.故选:D.【点睛】本题考查了二次根式的化简,关键是理解以下几点:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,②性质:=|a|.9、D【解析】

试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.10、C【解析】

根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∴EG=FG=EF=4,∴△GEF的周长=4×3=12,故选:C.【点睛】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.二、填空题(每小题3分,共24分)11、如果,那么【解析】

根据否命题的定义,写出否命题即可.【详解】如果,那么故答案为:如果,那么.【点睛】本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.12、1或【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为1或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.13、或或1【解析】

根据点P所在的线段分类讨论,再分析每种情况下腰的情况,然后利用直角三角形的性质和勾股定理分别求值即可.【详解】解:①当点P在AB上时,由∠ABC=120°,此时只能是以∠PBE为顶角的等腰三角形,BP=BE,过点B作BF⊥PE于点F,如下图所示∴∠FBE=∠ABC=10°,EP=2EF∴∠BEF=90°-∠FBE=30°∵,点是的中点∴BE=在Rt△BEF中,BF=根据勾股定理:EF=∴EP=2EF=;②当点P在AD上时,过点B作BF⊥AB于F,过点P作PG⊥BC,如下图所示∵∠ABC=120°∴∠A=10°∴∠ABF=90°-∠A=30°在Rt△ABF中AF=,BF=∴BP≥BF>BE,EP≥BF>BE∴此时只能是以∠BPE为顶角的等腰三角形,BP=PE,∴PG=BF=,EG=根据勾股定理:EP=;③当点P在CD上时,过点E作EF⊥CD于F,过点B作BG⊥CD由②可知:BE的中垂线与CD无交点,∴此时BP≠PE∵∠A=10°,四边形ABCD为平行四边形∴∠C=10°在Rt△BCG中,∠CBG=90°-∠C=30°,CG=根据勾股定理:BG=∴BP≥BG>BE∵EF⊥CD,BG⊥CD,点E为BC的中点∴EF为△BCG的中位线∴EF=∴此时只能是以∠BEP为顶角的等腰三角形,BE=PE=1.综上所述:的长为或或1.故答案为:或或1【点睛】此题考查的是等腰三角形的性质、直角三角形的性质和勾股定理,掌握三线合一、30°所对的直角边是斜边的一半、利用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.14、.【解析】

先根据平移特点求出新函数解析式,然后再求解新函数与x轴的交点坐标.【详解】解:由“上加下减”的平移规律可知:将函数的图象向上平移6个单位长度所得到的的新函数的解析式为:,令,得:,解得:,∴与轴的交点坐标为,故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知平移的规律——上加下减,左加右减是解答此题的关键.15、5【解析】

根据勾股定理,可得答案.【详解】解:PO=32+4故选:C.【点睛】本题考查了点的坐标,利用勾股定理是解题关键.16、500【解析】

根据当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,根据题意列出式子进行计算即可.【详解】(250-200)÷(126-120)×(120-90)+250=500,故答案为:500.【点睛】此题考查有理数的混合运算,解题关键在于根据题意列出式子.17、x≥1【解析】

由图象得出解集即可.【详解】由图象可得再x轴下方,即x≥1的时候,故答案为:x≥1.【点睛】本题考查一次函数图象的性质,关键在于牢记基础知识.18、1【解析】

根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵BC=16,AB=10,∴DE=×16=8,DF=×10=5,∴EF=DE-DF=8-5=1,故答案为:1.【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.三、解答题(共66分)19、(1)75件(2)当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件【解析】

(1)根据题意设购进甲种服装x件,可知购进甲需80x元,则乙为60(100-x)元,再根据二者之和不超过7500元,可列不等式,求解集可得结果;(2)根据要求设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,因此甲的利润为(120-80-a)元,乙的利润为(90-60-a)元,因此可得w=(10-a)x+3000,然后分情况讨论设计方案,①当0<a<10时,由一次函数的性质可判断当x=65时,利润最大;②当a=10时,w=3000,二者一样;③当10<a<20时,根据一次函数的性质可判断,当x=75时,利润最大.【详解】解:(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500解得:x≤75答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75W=(40-a)x+30(100-x)=(10-a)x+3000方案1:当0<a<10时,10-a>0,w随x的增大而增大所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:一元一次不等式,一次函数的应用20、且.【解析】

先解出关于的分式方程,根据解为负数,即可求得m的取值范围.【详解】由=1得,∴∵x<0,且x+1≠0∵<0且∴且【点睛】本题考查了分式方程的求解,考查了一元一次不等式的求解.根据解为负数,表示成不等式再求解是解题的关键.21、.【解析】

根据题目中的数据可以求得该三角形的周长【详解】解:∵这个三角形的三边长分别为:,∴这个三角形的周长是:=.【点睛】本题考查二次根式的性质与化简,解答本题的关键是明确二次根式的意义.22、﹣2<x≤3【解析】

分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可。【详解】解:,解不等式①得:x>﹣2,解不等式②得:x≤3,所以不等式组的解集为﹣2<x≤3,在同一数轴上分别表示出它们的解集得【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23、(1)甲种图书的单价为30元/本,乙种图书的单价为1元/本;(2)乙种图书最多能买2本.【解析】

(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,根据“用180元购买乙种图书比要购买甲种图书少2本”列分式方程即可求出结论;(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,根据“购买图书的总费用不超过5000元”列出不等式即可得出结论.【详解】解:(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,依题意,得:-=2,解得:x=30,经检验,x=30是所列分式方程的解,且符合题意,∴1.5x=1.答:甲种图书的单价为30元/本,乙种图书的单价为1元/本.(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,依题意,得:30(150-m)+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:乙种图书最多能买2本.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.24、(1)见解析;(2)是,理由见解析【解析】

(1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;(2)根据全等求出DM=BN,求出AM=CN,根据平行四边形的判定得出即可.【详解】(1)证明:在▱ABCD中,∠BAD=∠BCD,∵AB∥CD,∴∠BAD=∠ADF,∠EBC=∠BCD,∴∠ADF=∠EBC,∵延长AB至点E,延长CD至点F,∴∠F=∠E,又∵BE=DF,∴ΔDFM≅ΔBEN;(2)由(1)知ΔDFM≅ΔBEN,∴DM=BN,在▱ABCD中,AD=BC,且AD∥BC∴AD-DM=BC-BN∴AM=CN,且AM∥CN,∴四边形ANCN是平行四边形.【点睛】本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.25、(1)甲组平均每人投进个数为7个;(1)乙组表现更好.【解析】

(1)加权平均数:若n个数x1,x1,x3,…,xn的权分别是w1,w1,w3,…,wn,则x1w1+x1w1+…+xnwnw1+w1+…+wn叫做这n个数的加权平均数,根据加权平均数的定义计算即可.(1)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s1来表示,根据方差的计算公式结合平均数进行计算即可.【详解】解:(1)甲组平均每人投进个数:(个;(1)甲组方差:,乙组的方差为3.1,3.1<3.4所以从成绩稳定性角度看,乙组表现更好.【点睛】本题考查了方差的计算以及方差越小数据越稳定,正确运用方差公式进行计算是解题的关键.26、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.【解析】

(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到

DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化.EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论