宁夏固原市名校2024年八年级数学第二学期期末检测模拟试题含解析_第1页
宁夏固原市名校2024年八年级数学第二学期期末检测模拟试题含解析_第2页
宁夏固原市名校2024年八年级数学第二学期期末检测模拟试题含解析_第3页
宁夏固原市名校2024年八年级数学第二学期期末检测模拟试题含解析_第4页
宁夏固原市名校2024年八年级数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏固原市名校2024年八年级数学第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是()A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90° D.AE⊥BF2.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1 B.2 C.3 D.43.函数y=中,自变量x的取值范围是()A.x>-3 B.x≠0 C.x>-3且x≠0 D.x≠-34.下列图形中,成中心对称图形的是()A. B. C. D.5.二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣26.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则的值为()A. B. C. D.7.如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个 B.3个 C.4个 D.5个8.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.9.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误10.如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是()A.1个 B.2个C.3个 D.4个11.在□中,,则的度数为(

)A. B. C. D.12.如图,在菱形ABCD中,对角线AC,BD相交于点O.下列结论中不一定成立的是()A.AB∥CD B.OA=OCC.AC⊥BD D.AC=BD二、填空题(每题4分,共24分)13.已知,则____.14.若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.15.某正比例函数图象经过点(1,2),则该函数图象的解析式为___________16.如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是__________.17.已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.18.设a是的小数部分,则根式可以用表示为______.三、解答题(共78分)19.(8分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:BE=AD;(2)求∠BFD的度数.20.(8分)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,-2)两点,求此函数的解析式.21.(8分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.22.(10分)如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2km,BB′=4km,且A′B′=8km.(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.(2)求这个最短距离.23.(10分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。求证:DE=BF24.(10分)先化简,再求值:()÷,其中x=.25.(12分)在平面直角坐标系中,点A的坐标为,以线段OA为边作等边三角形,使点B落在第四象限内,点C为x正半轴上一动点,连接BC,以线段BC为边作等边三角形,使点D落在第四象限内.(1)如图1,在点C运动的过程巾,连接AD.①和全等吗?请说明理由:②延长DA交y轴于点E,若,求点C的坐标:(2)如图2,已知,当点C从点O运动到点M时,点D所走过的路径的长度为_________26.“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据正方形的性质可证明△ABE≌△BCF,通过△ABE≌△BCF逐一判断即可【详解】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C【点睛】本题考查正方形的性质及全等三角形的判断,熟练掌握相关知识是解题关键.2、B【解析】

根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【详解】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选B.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3、D【解析】试题分析:根据分式的意义,可知其分母不为0,可得x+3≠0,解得x≠-3.故选D4、B【解析】

解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形,故选B.5、B【解析】

分析已知和所求,要使二次根式在实数范围内有意义,则其被开方数大于等于0;易得a+1≥0,解不等式a+1≥0,即得答案.【详解】解:∵二次根式在实数范围内有意义,∴a+1≥0,解得a≥-1.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;6、A【解析】

直接根据平行线分线段成比例定理求解.【详解】解:∵a∥b∥c,

∴.

故选:A.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.7、C【解析】

分情况,BC为腰,BC为底,分别进行判断得到答案即可【详解】以BC为腰时,以B为圆心画圆将会与AB有一个交点、以C为圆心画圆同样将会与AB有两个个交点;以BC为底时,做BC的垂直平分线将会与AB有一个交点,所以BC为边作等腰三角形在AB上可找到4个点,故选C【点睛】本题主要考查等腰三角形的性质,充分理解基本性质能够分情况讨论是本题关键8、B【解析】

根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;

B、是因式分解,故本选项符合题意;

C、不是因式分解,故本选项不符合题意;

D、不是因式分解,故本选项不符合题意;

故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.9、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.10、C【解析】

由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.【详解】解:∵,∴,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=110°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=110°,故③正确;∴∠FDA=180°-∠DFE=180°-110°=30°,过点作于点,∴,故④不正确;∴正确的个数是3个,故选:C.【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.11、B【解析】

依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A=180°﹣∠B即可.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=216°,∴∠B=108°.∴∠A=180°﹣108°=72°.故选:B.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等,邻角互补.12、D【解析】

直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【详解】∵四边形ABCD是菱形,∴AB∥DC,OA=OC,AC⊥BD,无法得出AC=BD,故选项D错误,故选D.【点睛】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.二、填空题(每题4分,共24分)13、1【解析】

先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.【详解】解:∵,∴x=-5∴xy(x+y)=-5×3×(-2)

=1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.14、1分米或分米.【解析】

分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.【详解】2是斜边时,此直角三角形斜边上的中线长=×2=1分米,2是直角边时,斜边=,此直角三角形斜边上的中线长=×分米,综上所述,此直角三角形斜边上的中线长为1分米或分米.故答案为1分米或分米.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.15、【解析】

设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.【详解】解:设正比例函数的解析式为y=kx,把点(1,2)代入得,2=k×1,解得k=2,∴该函数图象的解析式为:;故答案为:.【点睛】本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.16、1【解析】

先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.【详解】根据平行四边形的性质得AD=BC=8

在Rt△ABC中,AB=10,AD=8,AC⊥BC

根据勾股定理得AC==6,

则S平行四边形ABCD=BC•AC=1,故答案为:1.【点睛】本题考查了平行四边形的对边相等的性质和勾股定理,正确求出AC的长是解题的关键.17、【解析】试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,∴b>0,∵y随x的增大而减小,∴k<0,例如y=-x+1(答案不唯一,k<0且b>0即可).考点:一次函数图象与系数的关系.18、【解析】

根据题意用表示出a,代入原式化简计算即可得到结果.【详解】解:根据题意得:a=,则原式=====,故答案为:.【点睛】此题考查了估算无理数的大小,根据题意表示出a是解本题的关键.三、解答题(共78分)19、(1)见解析;(2)60°【解析】

(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后根据SAS可证△ABE≌△CAD,再根据全等三角形的性质即得结论;(2)由全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可得出结果.【详解】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.【点睛】本题考查了等边三角形的性质、三角形的外角性质以及全等三角形的判定和性质,属于常考题型,熟练掌握上述基本知识是解题的关键.20、y=5x-2【解析】试题分析:直接把A点和B点坐标代入y=kx+b得到关于k、b的方程组,然后解方程组即可.试题解析:把A(1,3)、B(0,−2)代入y=kx+b得,解得,所以此函数解析式为y=5x−2.21、(1);(2)(3)见解析【解析】试题分析:(1)利用相似三角形的性质求得与的比值,依据和同高,则面积的比就是与的比值,据此即可求解;

(2)利用三角形的外角和定理证得可以证得,在直角中,利用勾股定理可以证得;

(3)连接易证是的中位线,然后根据是等腰直角三角形,易证利用相似三角形的对应边的比相等即可.试题解析:(1)∵,∴∵四边形ABCD是正方形,∴△CEF∽△ADF,∴,∴,∴;(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF,∵AC、BD是正方形ABCD的对角线.而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD,∴AD=AF,在中,根据勾股定理得:AD==OA,(3)证明:连接OE.∵点O是正方形ABCD的对角线AC、BD的交点,点O是BD的中点.又∵点E是BC的中点,∴OE是△BCD的中位线,∴=,∴..在中,∵∠GCF=45°.∴CG=GF,又∵CD=BC,∴,∴=.∴CG=BG.22、这个最短距离为10km.【解析】分析:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.(2)作CD⊥BB1的延长线于D,在Rt△BCD中,利用勾股定理求出BC即可;详解:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.(2)作CD⊥BB1的延长线于D,在Rt△BCD中,BC==10,∴PA+PB的最小值=PB+PC=BC=10(km).点睛:本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.23、详见解析【解析】

根据平行线的性质,利用全等三角形的判定定理(AAS)和性质,可得出结论.【详解】∵四边形ABCD是平行四边形,

∴AD=BC,AD//BC,∴∠DAE=∠CBF,

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEA=∠BFC=90°,

在△AED和△BFC中,

∴△AED≌△BFC,

∴BF=DE.【点睛】考查了平行四边形的性质,以及全等三角形的性质与判定,解题关键是灵活运用其性质.24、【解析】

根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:,当x=时,原式.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25、(1)①全等,见解析;②点C(1,0);(2)1.【解析】

(1)①先根据等边三角形的性质得∠OBA=∠CBD=10°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;

②由全等三角形的性质可得∠BAD=∠BOC=∠OAB=10°,可得∠EAO=10°,可求AE=2OA=4,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论