




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东昌府区梁水镇中学心中学2024届八年级下册数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.24B.C.D.52.如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为()A.2 B.4 C. D.23.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图象上的两个点,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定4.一个多边形的内角和是外角和的倍,则这个多边形的边数为()A. B. C. D.5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+36.要使二次根式有意义,则的取值范围是()A. B. C. D.7.菱形的周长等于其高的8倍,则这个菱形的较大内角是()A.30° B.120° C.150° D.135°8.某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:成绩(分)202224262830人数(人)154101510根据表中的信息判断,下列结论中错误的是()A.该班一共有45名同学B.该班学生这次考试成绩的众数是28C.该班学生这次考试成绩的平均数是25D.该班学生这次考试成绩的中位数是289.介于两个相邻整数之间,这两个整数是()A.2和3 B.3和4 C.4和5 D.5和610.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲908395乙889095丙908890A.甲 B.乙、丙 C.甲、乙 D.甲、丙二、填空题(每小题3分,共24分)11.一列数,,,,其中,(为不小于的整数),则___.12.某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是(
)A.6,6.5 B.6,7 C.6,7.5 D.7,7.513.不等式x+3>5的解集为_____.14.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.15.已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是_____________.16.如图,在中,,,,P为BC上一动点,于E,于F,M为EF的中点,则AM的最小为___.17.如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.18.不等式的正整数解为______.三、解答题(共66分)19.(10分)如图,已知正方形ABCD的边长是2,点E是AB边上一动点(点E与点A、B不重合),过点E作FG⊥DE交BC边于点F、交DA的延长线于点G,且FH∥AB.(1)当DE=433时,求(2)求证:DE=GF;(3)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数关系式.20.(6分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.21.(6分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.22.(8分)已知:四边形ABCD,E,F,G,H是各边的中点.(1)求证:四边形EFGH是平行四边形;(2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.23.(8分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.24.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.25.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.26.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:摸到球的次数10020030050080010003000摸到白球的次数651241783024815991803摸到白球的概率0.650.620.5930.6040.6010.5990.601(1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);(2)假如随机摸一次,摸到白球的概率P(白球)=______;(3)试估算盒子里白色的球有多少个?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.2、D【解析】
过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.【详解】解:如图,过点D作DH⊥CF于H,∵将等边△ABC向右平移得到△DEF,∴△DEF是等边三角形,∴DF=CF=2,∠DFC=60°,∵DH⊥CF,∴∠FDH=30°,CH=HF=1,∴DH=HF=,BH=BC+CH=3,∴BD===2,故选:D.【点睛】本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.3、C【解析】
先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【详解】解:∵一次函数y=-3x+1中,k=-3<0,∴y随着x的增大而减小.∵A(1,y1),B(3,y1)是一次函数y=-3x+1的图象上的两个点,1<3,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.4、B【解析】
设这个多边形有n条边,根据内角和是它的外角和的2倍,列方程,然后解方程即可.【详解】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=310°×:2,解得n=1.故这个多边形的边数是1.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为310°.5、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组b=3k+b=2解得b=3k=-1则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.6、D【解析】
根据二次根式有意义的条件进行求解即可.【详解】∵二次根式有意义∴解得故答案为:D.【点睛】本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.7、C【解析】
根据菱形四条边相等的性质,构造直角三角形DEC,从而利用30°角所对直角边等于斜边一半可求出∠DCE,进而可得出答案.【详解】解:设菱形的边长为a,高为h,则依题意,4a=8h,即a=2h,过点D作BC边上的高,与BC的延长线交于点E,∵a=2h,即DC=2DE,∴∠DCE=30°,∴菱形的较大内角的外角为30°,∴菱形的较大内角是150°.故答案为:C.【点睛】此题考查菱形的知识,熟悉菱形的性质,及一些特殊的直角是解题的关键,画出图形再解题有助于理清思路.8、C【解析】
根据总数,众数,中位数的定义即可一一判断;【详解】解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,故A、B、D正确,C错误,故选:C.【点睛】本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.9、B【解析】
根据无理数的估算得出的大小范围,即可得答案.【详解】∵9<15<16,∴3<<4,故选B.【点睛】本题考查的是估算无理数的大小,根据题意估算出的大小范围是解答此题的关键.10、C【解析】
利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选:C.【点睛】本题考查了加权平均数的计算方法.二、填空题(每小题3分,共24分)11、【解析】
把a1,a2,a3代入代数式计算,找出规律,根据规律计算.【详解】a1=,,,……,2019÷3=673,∴a2019=-1,故答案为:-1.【点睛】本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.12、A【解析】【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:故选:A【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.13、x>1.【解析】
利用不等式的基本性质,把不等号左边的3移到右边,合并同类项即可求得原不等式的解集.【详解】移项得,x>5﹣3,合并同类项得,x>1.故答案为:x>1.【点睛】本题主要考查了一元一次不等式的解法,解不等式要依据不等式的基本性质.14、4.1【解析】
直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【详解】解:∵菱形的两条对角线分别为6cm和1cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×1,解得:x=4.1.故答案为:4.1.【点睛】此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.15、或【解析】
解:分两种情况:①△ABC为锐角三角形时,如图1.作△ABC的高AD,BE为AC边的中线.∵在直角△ACD中,AC=a,cosC=,∴CD=a,AD=a.∵在直角△ABD中,∠ABD=45°,∴BD=AD=a,∴BC=BD+CD=a.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC∴BE=;②△ABC为钝角三角形时,如图2.作△ABC的高AD,BE为AC边的中线.∵在直角△ACD中,AC=a,cosC=,∴CD=a,AD=a.∵在直角△ABD中,∠ABD=45°,∴BD=AD=a,∴BC=BD+CD=a.在△BCE中,由余弦定理,得BE2=BC2+EC2-2BC•EC•cosC∴BE=.综上可知AC边上的中线长是或.16、2.1.【解析】
解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴∴∴AP最短时,AP=1.8∴当AM最短时,AM==2.1故答案为:2.1.17、1【解析】
证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.【详解】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,∴DE=CD-CE=CD-(BC-BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18、1【解析】
先求出不等式的解集,然后根据解集求其非正整数解.【详解】解:∵,∴,∴正整数解是:1;故答案为:1.【点睛】本题考查了一元一次不等式的解法,解不等式的步骤有:去分母、去括号、移项、合并同类项、系数化成1,注意,系数化为1时要考虑不等号的方向是否改变.三、解答题(共66分)19、(1)233;(2)见解析;(3)y=4+x22(0【解析】
(1)根据勾股定理计算AE的长;(2)证明△FHG≌△DAE即可解决问题;(3)由(1)可知DE=FG,所以△DGF的底与高可以利用勾股定理用含x的式子表示出来,所以解析式就可以表示出来.【详解】(1)∵四边形ABCD是正方形,∴∠DAE=90°,∵AD=2,DE=43∴AE=DE2-AD2(2)证明:∵在正方形ABCD中,∠DAE=∠B=90°,∴四边形ABFH是矩形,∴FH=AB=DA,∵DE⊥FG,∴∠G=90°﹣∠ADE=∠DEA,又∴∠DAE=∠FHG=90°,∴△FHG≌△DAE(AAS),∴DE=GF.(3)∵△FHG≌△DAE∴FG=DE=AD2+A∵S△DGF=12FG•DE∴y=4+x∴解析式为:y=4+x22(0<x【点睛】本题考查四边形综合题、全等三角形的判定与性质等知识,解题的关键是学会证明全等三角形解决问题.20、(1)A、B两种型号电动自行车的进货单价分别为2500元3000元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20时,y有最大值,最大值为11000元.【解析】
(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,根据用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样,列分式方程即可解决问题;(2)根据总利润=A型的利润+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题.【详解】解:(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,由题意:=,解得:x=2500,经检验:x=2500是分式方程的解,答:A、B两种型号电动自行车的进货单价分别为2500元3000元;(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.【点睛】本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.21、12千米【解析】
设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据大型清雪车清扫路面90千米与小型清雪车清扫路面60千米所用的时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据题意得:解得:x=12,经检验,x=12是原方程的解,且符合题意.答:小型清雪车每小时清扫路面的长度为12千米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22、(1)见解析;(2)四边形EFGH是菱形,理由见解析【解析】
(1)根据三角形中位线定理可EF∥AC∥HG,HE∥BD∥GF,即可解答.(2)根据菱形是邻边相等的平行四边形,证明EF=AC=BD=EH,即可解答.【详解】(1)∵E,F,G,H是各边的中点,∴EF∥AC∥HG,HE∥BD∥GF,∴四边形EFGH是平行四边形;(2)四边形ABCD是一个矩形,四边形EFGH是菱形;∵四边形ABCD是矩形,∴AC=BD,∴EF=AC=BD=EH,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.【点睛】此题考查平行四边形的判定,菱形的判定,解题关键在于利用三角形中位线定理进行求证,掌握各判定定理.23、(1)AG=1.5;AM+CM最小值为;(3)【解析】试题分析:(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;(2)作点A关于直线y=-1的对称点A',连接CA'与y=-1交于一点,这个就是所求的点,求出此时AM+CM的值;(3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.试题解析:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,∵AB=4,BC=3,∴BD=,设AG的长度为x,∴BG=4-x,HB=5-3=2,在Rt△BHG中,GH2+HB2=BG2,x2+4=(4-x)2,解得:x=1.5,即AG的长度为1.5;(2)如图所示:作点A关于直线y=-1的对称点A',连接CA'与y=-1交于M点,∵点B(5,1),∴A(1,1),C(5,4),A'(1,-3),AM+CM=A'C=,即AM+CM的最小值为;(3)∵点A(1,1),∴G(2.5,1),过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,∴△AEH∽△DAB,△HFB∽△DAB,∴,,即,,解得:EH=,HF=,则点H(,),设GH所在直线的解析式为y=kx+b,则,解得:,则解析式为:.【点睛】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.24、(1)25;(2)这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65m的运动员能进入复赛.【解析】
试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:=1.61;∵在这组数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《财务报表分析实训课件》课件
- 2025年江苏省扬州市高邮市中考物理一模试卷(含解析)
- 《电子产品跟单销售流程》课件
- 短途行程协议
- 《GB 16174.1-2015手术植入物 有源植入式医疗器械 第1部分:安全、标记和制造商所提供信息的通 用要求》(2025版)深度解析
- 铁路市场营销市场细分的方法课件
- 云南水池补漏施工方案
- 《GB 16787-199730 MHz~1GHz 声音和电视信号的电缆分配系统辐射测量方法和限值》(2025版)深度解析
- 中国主要气象灾害
- 中医面部知识培训课件视频
- 《中国糖尿病防治指南(2024版)》解读
- 糖尿病患者的足部护理
- 土地流转合同补充协议书
- 七年级语文下册《登幽州台歌》课件
- 兼职劳务协议合同模板
- 2025-2030中国改性塑料市场盈利能力预测及发展机遇规模研究报告
- 2025全国国家版图知识竞赛题库及答案(300题)中小学组试题及答案
- 2025年河南机电职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- (二模)东北三省三校2025年高三第二次联合模拟考试 英语试卷(含答案解析)
- 静脉输液治疗的健康教育
- 九年级英语单词表上册译林版
评论
0/150
提交评论