版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥四十五中学2024年八年级数学第二学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.与是同类二次根式的是()A. B. C. D.2.下列计算结果,正确的是()A. B. C. D.3.如图,四边形ABCD是矩形,连接BD,,延长BC到E使CE=BD,连接AE,则的度数为()A. B. C. D.4.下列方程中属于一元二次方程的是()A. B. C. D.5.如图,D、E分别是AB、AC的中点,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE6.慢车和快车先后从甲地出发沿直线道路匀速驶向乙地,快车比慢车晚出发0.5小时,行驶一段时间后,快车途中休息,休息后继续按原速行驶,到达乙地后停止.慢车和快车离甲地的距离y(千米)与慢车行驶时间x(小时)之间的函数关系如图所示.有以下说法:①快车速度是120千米/小时;②慢车到达乙地比快车到达乙地晚了0.5小时;③点C坐标(,100);④线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤);其中正确的个数有()A.1 B.2 C.3 D.47.用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()A.4B.5C.6D.88.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.a2+c2=b2 B.c2=2a2 C.a=b D.∠C=90°9.下列调查中,适合采用普查的是()A.夏季冷饮市场上冰激凌的质量 B.某本书中的印刷错误C.《舌尖上的中国》第三季的收视率 D.公民保护环境的意识10.下列各组数中是勾股数的为()A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、9二、填空题(每小题3分,共24分)11.不等式组的解集为_________.12.对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________13.已知:函数,,若,则__________(填“”或“”或“”).14.化简:=_______________.15.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn=_____.(用含n的式子表示)16.如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.17.化简:_________.18.已知一组数据1,2,0,﹣1,x,1的平均数是1,那么这组数据的方差是__.三、解答题(共66分)19.(10分)已知正方形的边长为4,、分别为直线、上两点.(1)如图1,点在上,点在上,,求证:.(2)如图2,点为延长线上一点,作交的延长线于,作于,求的长.(3)如图3,点在的延长线上,,点在上,,直线交于,连接,设的面积为,直接写出与的函数关系式.20.(6分)先化简,再求值:,其中.21.(6分)如图,矩形的长,宽,现将矩形的一角沿折痕翻折,使得点落在边上,求点的位置(即的长)。22.(8分)解不等式,并把解集表示在数轴上.23.(8分)如图,的一个外角为,求,,的度数.24.(8分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;25.(10分)如图,直线的解析式为,且与x轴交于点D,直线经过点A、B,直线,相交于点C.求点D的坐标;求的面积.26.(10分)任丘市举办一场中学生乒乓球比赛,比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x=20时,y=1600;当x=30时,y=1.(1)求y与x之间的函数关系式;(2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
把各选项中的二次根式化为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】A、与不是同类二次根式,故A错误;B、与是同类二次根式,故B正确;C、与不是同类二次根式,故C错误;D、与不是同类二次根式,故D错误;故选:B.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.2、C【解析】
按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.【详解】A.与不是同类二次根式,不能合并,故此选项错误;B.,故此选项错误;C.,正确;D.不能化简了,故此选项错误.故选:C.【点睛】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.3、A【解析】
如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.【详解】如图,连接AC.∵四边形ABCD是矩形,∴AC=BD.∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.故选A.【点睛】本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.4、A【解析】
根据一元二次方程的定义直接进行判断【详解】解:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程.符合这个定义.故选:A【点睛】本题考查了一元二次方程的概念:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程.5、B【解析】
首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【详解】∵E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故选B.【点睛】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.6、D【解析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图可得,①快车的速度为:(400﹣280)÷(4.5﹣3.5)=120千米/小时,故①正确,②慢车的速度为:280÷3.5=80千米/小时,慢车到达乙地比快车到达乙地晚了:400÷80﹣4.5=0.5小时,故②正确,③点C的纵坐标是:400﹣120×(4.5﹣2)=100,横坐标是:0.5+100÷120=,即点C的坐标为(,100),故③正确,④设线段BC对应的函数表达式为y=kx+b,∵点B(0.5,0),点C(,100),∴,得,即线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤),故④正确,故选:D.【点睛】本题主要考查一次函数的应用,能够根据题意结合图象获取有效信息是解题的关键.7、A【解析】正八边形的每个内角为:180°-360°÷8=135°,两个正八边形在一个顶点处的内角和为:2×135°=270°,那么另一个多边形的内角度数为:360°-270°=90°,∵正方形的每个内角为90°,∴另一个是正方形.∴第三块木板的边数是4.故选A.8、A【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.【详解】设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.【点睛】考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.9、B【解析】分析:根据抽样调查和全面调查的意义解答即可.详解:A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;B.调查某本书中的印刷错误比较重要,宜采用普查;C.调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;D.调查公民保护环境的意识工作量比较大,宜采用抽样调查;故选B.点睛:本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【解析】
根据勾股定理的逆定理分别对各组数据进行检验即可.【详解】解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;B.∵42+52=41≠62=36,∴不是勾股数,故B错误;C.∵32+42=25=52=25,∴是勾股数,故C正确;D.∵72+82=113≠92=81,∴不是勾股数,故D错误.故选C.【点睛】本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.二、填空题(每小题3分,共24分)11、【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】解:解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故答案为:.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12、a>-1【解析】
一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】解:根据一次函数的性质,对于y=(a+1)x+1,
当a+1>0时,即a>-1时,y随x的增大而增大.
故答案是a>-1.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13、<【解析】
联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.【详解】根据题意联立方程组得,解得,,画函数图象得,所以,当,则<.故答案为:<.【点睛】本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.14、【解析】分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.详解:原式=.点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.15、:()n.【解析】
由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴S1=××()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴S2=××()2=()2;依此类推,Sn=()n.故答案为()n.“点睛”此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.16、2【解析】
连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.17、【解析】
分子分母同时约去公因式5xy即可.【详解】解:.
故答案为.【点睛】此题主要考查了分式的约分,关键是找出分子分母的公因式.18、【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…xn的平均数为Z,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【详解】x=1×6﹣1﹣2﹣0﹣(﹣1)﹣1=3s2=[(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2+(1﹣1)2]=.故答案为.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共66分)19、(1)详见解析;(2)4;(3)【解析】
(1)先证出,得到,则有;(2)延长交的延长线于,先证出,得到,再由直角三角形的性质得到;(3)过作交于,交于,先证得得到,再进一步得到及,所以,,所以.【详解】(1)证明:∵四边形是正方形,∴,,∴,∵,∴,∴,∴,∴.(2)解:延长交的延长线于,∵四边形是正方形,∴,,∵,∴,,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴.(3).证明:过作交于,交于,则,易得∴,∴,由此可证平分,∴,∴,∴,∴为等腰直角三角形,∴,∴,∴,∴.【点睛】本题考查了正方形的综合,熟练掌握正方形和三角形全等的判定与性质,添加恰当的辅助线是解题关键.20、;【解析】
首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,然后进行乘除法计算,最后将a的值代入化简后的式子进行计算.【详解】解:原式=当a=时,原式=.【点睛】本题考查分式的化简求值.21、点E在离点D的距离为处.【解析】
由折叠的性质可得BC=BC'=5,CE=C'E,由勾股定理可求AC'=4,可得C'D=1,由勾股定理可求DE的长,即可求E点的位置.【详解】∵将矩形的一角沿折痕BE翻折,使得C点落在AD边上,∴BC=BC'=5,CE=C'E在Rt△ABC'中,AC'==4,∴C'D=AD-AC'=1,在Rt△C'DE中,C'E2=DE2+C'D2,∴(3-DE)2=DE2+1∴DE=∴点E在离点D的距离为处.【点睛】本题考查翻折变换、矩形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识22、,数轴见解析.【解析】
按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可得.【详解】解:去分母得:,移项得:x-3x<2+2-5,合并同类项得:,系数化为1得:,把解集在数轴上表示如下:.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤以及注意事项是解题的关键.23、,,【解析】
利用已知可先求出∠BCD=110°,根据平行四边形的性质知,平行四边形的对角相等以及邻角互补来求∠A,∠B,∠D的度数.【详解】∵四边形ABCD是平行四边形,∴∠A=∠BCD,∠B=∠D,AB//CD,∵▱ABCD的一个外角为38°,∴∠BCD=142°,∴∠A=142°,∠B=∠DCE=38°,∴∠D=38°.【点睛】本题主要考查了平行四边形的性质,解题的关键是掌握平行四边形对角相等,邻角互补.24、(1)1001,9999;(2)见详解;(3)2754和1【解析】
(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则=1100(a+b)+11(c+d)=1111(a+b);即两个“相关和平数”之和是1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工合同样本:学校建设协议
- 电力公司供水管道铺设项目合同
- 城市环保光纤布线合同
- 智能办公监控系统施工协议
- 交通运输服务招投标合同模板
- 宿舍区消防演练计划
- 社团投资管理规范
- 制造业临时工薪资发放规范
- 南宁市物业安全隐患排查
- 皮具店防火门安装协议
- 河南省信阳市2024-2025学年七年级上学期期中历史试题(含答案)
- 2024至2030年高分子吸水树脂项目投资价值分析报告
- 期中测试卷(1-5单元)(试题)-2024-2025学年三年级上册数学人教版
- 中国航空协会:2024低空经济场景白皮书
- DB11T 731-2010 室外照明干扰光限制规范
- 2024年学校食堂管理工作计划(六篇)
- 学校食堂消毒记录
- 塔吊使用安全协议书
- 中国近代史纲要试题及答案(全套)
- 民办非企业单位理事会制度
- 地 理气温的变化和分布课时1课件-2024-2025学年七年级地理上册(人教版2024)
评论
0/150
提交评论