2024年安徽省合肥市肥东县八年级数学第二学期期末调研模拟试题含解析_第1页
2024年安徽省合肥市肥东县八年级数学第二学期期末调研模拟试题含解析_第2页
2024年安徽省合肥市肥东县八年级数学第二学期期末调研模拟试题含解析_第3页
2024年安徽省合肥市肥东县八年级数学第二学期期末调研模拟试题含解析_第4页
2024年安徽省合肥市肥东县八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年安徽省合肥市肥东县八年级数学第二学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一 B.方案二 C.方案三 D.方案四2.如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A. B. C. D.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车 B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米 D.到达学校时骑行时间为20分钟5.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x的值为()A.1 B.4 C.2 D.-0.56.已知一组数据2、x、7、3、5、3、2的众数是2,则这组数据的中位数是()A.2 B.2.5 C.3 D.57.若,则的值()A. B. C.–7 D.78.某商品降价后欲恢复原价,则提价的百分数为().A. B. C. D.9.不等式13x<1A.x<13 B.x>1310.直线=与直线y2=2x在同一平面直角坐标系中的图象如图所示,则不等式y1≤y2的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣2二、填空题(每小题3分,共24分)11.分解因式:_____.12.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.13.“两直线平行,内错角相等”的逆命题是__________.14.已知m是关于x的方程的一个根,则=______.15.使代数式有意义的x的取值范围是_____.16.一次函数y=-4x-5的图象不经过第_____________象限.17.若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.18.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,连接BE,点F、G分别是BE、BC的中点,若AB=6,BC=4,则FG的长_________________.三、解答题(共66分)19.(10分)如图,平面直角坐标系中,矩形的对角线,.(1)求点的坐标;(2)把矩形沿直线对折,使点落在点处,折痕分别与、、相交于点、、,求直线的解析式;(3)若点在直线上,平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.20.(6分)已知关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.21.(6分)如图,△ABC的面积为63,D是BC上的一点,且BD:BC=2:3,DE∥AC交AB于点E,延长DE到F,使FE:ED=2:1.连结CF交AB点于G.(1)求△BDE的面积;(2)求的值;(3)求△ACG的面积.22.(8分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值23.(8分)计算:(1);(2)sin30°+cos30°•tan60°.24.(8分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明.25.(10分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);26.(10分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:数据收集109.59.510899.5971045.5107.99.510数据分析9.598.58.5109.510869.5109.598.59.56整理,描述数据:按如下分数段整理,描述这两组样本数据:10数据收集11365数据分析(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据:两组样本数据的平均数,中位数,众数如下表所示:项目平均数中位数众数数据收集8.759.510数据分析8.819.259.5得出结论:(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【详解】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.【点睛】此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.2、A【解析】

先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【详解】∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选A.【点睛】本题考查了勾股定理的应用,根据坐标得出OA及OB的长是解题关键.3、B【解析】

将各选项中长度最长的线段长求出平方,剩下的两线段长求出平方和,若两个结果相等,利用勾股定理的逆定理得到这三条线段能组成直角三角形;反之不能组成直角三角形.【详解】A、∵42+52=41;62=36,

∴42+52≠62,

则此选项线段长不能组成直角三角形;B、∵32+42=9+16=85;52=25,

∴32+42=52,

则此选项线段长能组成直角三角形;

C、∵52+62=61;72=49,

∴52+62≠72,

则此选项线段长不能组成直角三角形;

D、∵12+()2=3;32=9,

∴12+()2≠32,

则此选项线段长不能组成直角三角形;故选B【点睛】此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.4、D【解析】

观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.5、B【解析】

根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【详解】根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故选B.【点睛】本题考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.6、C【解析】

根据众数定义首先求出x的值,再根据中位数的求法,求出中位数.【详解】解:数据2,x,7,3,5,3,2的众数是2,说明2出现的次数最多,x是未知数时2,3,均出现两次,.x=2.这组数据从小到大排列:2,2,2,3,3,5,7.处于中间位置的数是3,因而的中位数是3.故选:C.【点睛】本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.7、D【解析】

将两边平方后,根据完全平方公式化简即可得出结果.【详解】解:∵∴∴即:故选:D.【点睛】本题考查了完全平方公式的应用,熟悉完全平方公式的性质是解题的关键.8、C【解析】解:设原价为元,提价百分数为,则,解得,故选.9、D【解析】

两边同时乘以3,即可得到答案.【详解】解:13x<1,解得:故选择:D.【点睛】本题考查了解不等式,解题的关键是掌握不等式的解法.10、B【解析】

直接根据两函数图象的交点坐标即可得出结论.【详解】∵由函数图象可知,当x≥-1时,直线y1=在直线y2=2x的下方,

∴不等式y1≤y2的解集为x≥-1.

故选:B.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.二、填空题(每小题3分,共24分)11、【解析】

直接提取公因式a即可得答案.【详解】3a2+a=a(3a+1),故答案为:a(3a+1)【点睛】本题考查提取公因式法分解因式,正确找出公因式是解题关键.12、2【解析】

解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.13、内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.14、1.【解析】试题分析:∵m是关于x的方程的一个根,∴,∴,∴=1,故答案为1.考点:一元二次方程的解;条件求值.15、x≥0且x≠2【解析】

根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.【详解】由题意得:x⩾0且2x−1≠0,解得x⩾0且x≠,故答案为x⩾0且x≠.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.16、一【解析】

根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵一次函数y=-4x-5,k=-4<0,b=-5<0,∴该函数经过第二、三、四象限,不经过第一象限,故答案为:一.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.17、丁【解析】

首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.【详解】∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的是丁,故答案为:丁.【点睛】此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.18、1【解析】

先由平行四边形的性质以及角平分线的定义判断出∠DAE=∠DEA,继而求得CE的长,再根据三角形中位线定理进行求解即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC=4,DC=AB=6,DC//AB,∴∠EAB=∠AED,∵∠EAB=∠DAE,∴∠DAE=∠DEA,∴DE=AD=4,∴CE=CD-DE=6-4=2,∵点F、G分别是BE、BC的中点,∴FG=EC=1,故答案为1.【点睛】本题考查了平行四边形的性质,等腰三角形的判定,三角形中位线定理,熟练掌握相关内容是解题的关键.三、解答题(共66分)19、(1);(2);(3)存在符合条件的点共有4个,分别为【解析】分析:(1)利用三角函数求得OA以及OC的长度,则B的坐标即可得到;(2)分别求出D点和E点坐标,即可求得DE的解析式;(3)分当FM是菱形的边和当OF是对角线两种情况进行讨论.利用三角函数即可求得N的坐标.详解:(1)在直角△OAC中,tan∠ACO=,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=571,解得:x=4.则C的坐标是:(12,0),B的坐标是();(2)由折叠可知,∵四边形是矩形,∴∥,∴,∴=,∴设直线的解析式为,则,解得;∴.(3)∵OF为Rt△AOC斜边上的中线,∴OF=AC=12,∵,∴tan∠EDC=∴DE与x轴夹角是10°,当FM是菱形的边时(如图1),ON∥FM,∴∠NOC=10°或120°.当∠NOC=10°时,过N作NG⊥y轴,∴NG=ON•sin30°=12×=1,OG=ON•cos30°=12×=1,此时N的坐标是(1,1);当∠NOC=120°时,与当∠NOC=10°时关于原点对称,则坐标是(-1,-1);当OF是对角线时(如图2),MN关于OF对称,∵F的坐标是(1,1),∴∠FOD=∠NOF=30°,在直角△ONH中,OH=OF=1,ON=.作NL⊥y轴于点L.在直角△ONL中,∠NOL=30°,∴NL=ON=,OL=ON•cos30°=×=1.此时N的坐标是(,1).当DE与y轴的交点时M,这个时候N在第四象限,此时点N的坐标为:(1,-1).则N的坐标是:(1,-1)或(1,1)或(-1,-1)或(2,1).点睛:此题属于一次函数综合题,涉及的知识有:锐角三角函数定义,勾股定理,以及菱形的性质,本题对于N的位置的讨论是解第三问的关键.20、(1),且;(2)不存在,理由见解析.【解析】

(1)根据方程有两个不相等的实数根可知△=,求得k的取值范围;(2)可假设存在实数k,使得方程的两个实数根,的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.【详解】解:(1)∵方程有两个不相等的实数根,∴△=,且,解得,且,即k的取值范围是,且;(2)假设存在实数k,使得方程的两个实数根,的倒数和为0,则,不为0,且,即,且,解得,而与方程有两个不相等实根的条件,且矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.【点睛】本题考查根与系数的关系;一元二次方程的定义;根的判别式.21、(1)△BDE的面积是28;(2);(3)9【解析】

(1)因为DE∥AC,所以△BDE∽△BCA,由相似三角形的性质:面积比等于相似比的平方可得到△BDE的面积;(2)若要求的值,可由相似三角形的性质分别得到AC和DE的数量关系、EF和DE的数量关系即可;(3)由(1)可知△BDE的面积是28,因为BD:BC=2:3,所以BD:CD=2:1,又因为三角形BDE和三角形CDE中BD和CD边上的高相等,所以S=14,进而求出四边形ACDE的面积是35和S=21,利用相似三角【详解】(1)∵DE∥AC,∴△BDE∽△BCA,∴,∵BD:BC=2:3,∴,∵△ABC的面积为63,∴△BDE的面积是28;(2)∵DE∥AC,∴,∴AC=ED,∵FE:ED=2:1,∴EF=2ED,∴;(3)∵△BDE的面积是28,∴S=14,∴四边形ACDE的面积是35,∴S=21,∵DE∥AC,∴△GEF∽△GAC,∴,∴S=×21=9.【点睛】此题考查相似三角形的判定与性质,三角形的面积,解题关键在于得到△BDE∽△BCA22、(1)y=x+5;(2)5;(1)7或1【解析】

(1)利用待定系数法求一次函数的解析式;(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;(1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.【详解】解:(1)设这个一次函数的解析式是y=kx+b,把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,所以这个一次函数的解析式是:y=x+5;(2)设直线AB交x轴于C,如图,当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),当n=2时,S△OPC=×5×2=5,即直线AB,直线OP与x轴围成的图形的面积为5;(1)∵当△OAP的面积等于△OAB的面积的2倍,∴×5×|m|=2××1×5,∴m=2或m=﹣2,即P点的横坐标为2或﹣2,当x=2时,y=x+5=7,此时P(2,7);当x=﹣2时,y=x+5=1,此时P(﹣2,1);综上所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论