2024届内蒙古北京八中学乌兰察布分校数学八年级下册期末学业水平测试试题含解析_第1页
2024届内蒙古北京八中学乌兰察布分校数学八年级下册期末学业水平测试试题含解析_第2页
2024届内蒙古北京八中学乌兰察布分校数学八年级下册期末学业水平测试试题含解析_第3页
2024届内蒙古北京八中学乌兰察布分校数学八年级下册期末学业水平测试试题含解析_第4页
2024届内蒙古北京八中学乌兰察布分校数学八年级下册期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古北京八中学乌兰察布分校数学八年级下册期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A.5元B.10元C.20元D.10元或20元2.在平面直角坐标系中,点(–1,–2)在第()象限.A.一B.二C.三D.四3.下面各组数是三角形三边长,其中为直角三角形的是()A.8,12,15 B.5,6,8 C.8,15,17 D.10,15,204.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2 B. C.5 D.5.能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC; B.∠A=∠B,∠C=∠D;C.AB=CD,AD=BC; D.AB=AD,CB=CD6.如图,在菱形中,,点、分别为、上的动点,,点从点向点运动的过程中,的长度()A.逐渐增加 B.逐渐减小C.保持不变且与的长度相等 D.保持不变且与的长度相等7.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要()分钟A.12 B.14 C.18 D.208.已知正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.9.将化成的形式,则的值是()A.-5 B.-8 C.-11 D.510.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.2811.函数与()在同一平面直角坐标系内的图象可能是()A. B. C. D.12.如图,有一张直角三角形纸片,两条直角边,,将折叠,使点和点重合,折痕为,则的长为()A.1.8 B.2.5 C.3 D.3.75二、填空题(每题4分,共24分)13.如图,的对角线相交于点,点分别是线段的中点,若厘米,的周长是厘米,则__________厘米.14.直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.15.关于x的不等式组的解集为1<x<3,则a的值为____.16.二项方程在实数范围内的解是_______________17.化简:(+2)(﹣2)=________.18.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.三、解答题(共78分)19.(8分)在菱形ABCD中,AC是对角线.(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证:∠APD=∠EBC.20.(8分)四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;21.(8分)计算:﹣3+2.22.(10分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.23.(10分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AF=CE.求证:DE∥BF.24.(10分)如图,AD是等腰△ABC底边BC上的中线,点O是AC中点,延长DO到E,使OE=OD,连接AE,CE,求证:四边形ADCE的是矩形.25.(12分)已知,,为的三边长,并且满足条件,试判断的形状.26.某商场欲招聘一名员工,现有甲、乙两人竞聘.通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示:应试者计算机语言商品知识甲705080乙606080(1)若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,计算两名应试者的平均成绩.从成绩看,应该录取谁?(2)若商场需要招聘电脑收银员,计算机、语言和商品知识成绩分别占50%,30%,20%,计算两名应试者的平均成绩.从成绩看,应该录取谁?

参考答案一、选择题(每题4分,共48分)1、C【解析】

设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设每件衬衫应降价x元,则每天可销售(1+2x)件,根据题意得:(40-x)(1+2x)=110,解得:x1=10,x2=1.∵扩大销售,减少库存,∴x=1.故选C.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2、C【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.3、C【解析】试题分析:A.82+122≠152,故不是直角三角形,错误;B.52+62≠82,故不是直角三角形,错误;C.82+152=172,故是直角三角形,正确;D.102+152≠202,故不是直角三角形,错误.故选C.考点:勾股定理的逆定理.4、B【解析】

根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.5、C【解析】

利用一组对边平行且相等的四边形为平行四边形可对A进行判定;根据两组对角分别相等的四边形为平行四边形可对B进行判定;根据两组对边分别相等的四边形为平行四边形可对C、D进行判定.【详解】A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选:C.【点睛】本题考查了平行四边形的判定,解题的关键是熟知平行四边形的判定定理.6、D【解析】【分析】如图,连接BD,由菱形的性质以及∠A=60°,可得△BCD是等边三角形,从而可得BD=BC,再通过证明△BCF≌BDE,从而可得CF=DE,继而可得到AE+CF=AB,由此即可作出判断.【详解】如图,连接BD,∵四边形ABCD是菱形,∠A=60°,∴CD=BC,∠C=∠A=60°,∠ABC=∠ADC==120°,∴∠4=∠DBC=60°,∴△BCD是等边三角形,∴BD=BC,∵∠2+∠3=∠EBF=60°,∠1+∠2=∠DBC=60°,∴∠1=∠3,在△BCF和△BDE中,,∴△BCF≌BDE,∴CF=DE,∵AE+DE=AB,∴AE+CF=AB,故选D.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,熟练掌握相关的定理与性质是解题的关键.7、A【解析】

根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,∴甲的速度是:1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得:10x+16×=16,解得:x=,∴乙从B地到A地需要的时间为:(分钟);故选:A.【点睛】本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.8、B【解析】

根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:正比例函的函数值随的增大而减小,,一次函数的一次项系数大于0,常数项小于0,一次函数的图象经过第一、三象限,且与轴的负半轴相交.故选:.【点睛】本题考查正比例函数的性质和一次函数的图象,解题的关键是熟练掌握正比例函数的性质和一次函数的图象.9、A【解析】

首先把x2-6x+1化为(x-3)2-8,然后根据把二次函数的表达式y=x2-6x+1化为y=a(x-h)2+k的形式,分别求出h、k的值各是多少,即可求出h+k的值是多少.【详解】解:∵y=x2-6x+1=(x-3)2-8,

∴(x-3)2-8=a(x-h)2+k,

∴a=1,h=3,k=-8,

∴h+k=3+(-8)=-1.

故选:A.【点睛】此题主要考查了二次函数的三种形式,要熟练掌握三种形式之间相互转化的方法.10、D【解析】

首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.【详解】解:四边形是菱形,,,菱形的周长为24,,,,,,,菱形的面积三角形的面积,故选D.【点睛】本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.11、D【解析】

先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.【详解】A.函数y=ax﹣1的图象应该交于y轴的负半轴,故错误;B.由函数y=ax﹣1的图象可知a>0,由函数y(a≠0)的图象可知a<0,错误;C.函数y=ax﹣1的图象应该交于y轴的负半轴,故错误;D.由函数y=ax﹣1的图象可知a>0,由函数y(a≠0)的图象可知a>0,正确.故选D.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12、D【解析】

设CD=x,则BD=AD=10-x.在Rt△ACD中运用勾股定理列方程,就可以求出CD的长.【详解】解:设CD=x,则BD=AD=10-x.∵在Rt△ACD中,(10-x)2=x2+52,100+x2-20x=x2+25,∴20x=75,解得:x=3.75,∴CD=3.75.故选:D.【点睛】本题主要考查了折叠问题和勾股定理的综合运用.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质,用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题(每题4分,共24分)13、【解析】

先由平行四边形的性质求出OA+OB的值,再由的周长是厘米,求出AB的值,然后根据三角形的中位线即可求出EF的值.【详解】∵四边形ABCD是平行四边形,厘米,∴OA+OB=12厘米,∵的周长是厘米,∴AB=20-12=8厘米,∵点分别是线段的中点,∴EF是的中位线,∴EF=AB=4厘米.故答案为:4.【点睛】本题考查了平行四边形的性质,三角形中位线的判定与性质.三角形的中位线平行于第三边,并且等于第三边的一半.14、【解析】

利用勾股定理直接计算可得答案.【详解】解:由勾股定理得:斜边故答案为:.【点睛】本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.15、4【解析】

解:解不等式2x+1>3可得x>1,解不等式a-x>1,可得x<a-1,然后根据不等式组的解集为1<x<3,可知a-1=3,解得a=4.故答案为4.【点睛】此题主要考查了不等式组的解,解题关键是根据不等式组的解集和求出不等式的解集的特点,求解即可.16、x=-1【解析】

由2x1+54=0,得x1=-27,解出x值即可.【详解】由2x1+54=0,得x1=-27,∴x=-1,故答案为:x=-1.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.17、1【解析】根据平方差公式,(+2)(﹣2)=()2﹣22=5﹣4=1.故答案为:1.18、1【解析】

根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.三、解答题(共78分)19、(1)24;110°;35°;(2)见解析.【解析】

(1)由菱形的性质可求解;(2)由“SAS”可得△DCE≌△BCE,可得∠CDP=∠CBE,由平行线的性质可得∠CDP=∠APD=∠CBE.【详解】解:(1)∵四边形ABCD是菱形∴AB=BC=CD=AD=6,∠DAB+∠ADC=180°,∠DCA=∠DCB=∠DAB=35°∴菱形ABCD的周长=4×6=24,∠ADC=180°-70°=110°,故答案为:24,110°,35°(2)证明:∵菱形ABCD∴CD//AB,CD=CB,CA平分∠BCD∴∠CDE=∠APD,∠ACD=∠ACB∵CD=CB,∠BCE=∠DCE,CE=CE∴△CBE≌△CDE(SAS)∴∠CBE=∠CDE∴∠CBE=∠APD.【点睛】本题考查了菱形的性质,全等三角形判定和性质,熟练运用菱形的性质是本题的关键.20、∠BAD=135°.【解析】分析:连接AC,则△ABC是等腰直角三角形,用勾股定理求出AC,再用勾股定理的逆定理判定∠DAC=90°.详解:如图,连接AC,Rt△ABC中,因为AB=BC,∠ABC=90°所以∠BAC=45°,由勾股定理得AC=2;△ACD中,因为AC2=4,AD2=1,CD2=5,所以AC2+AD2=CD2,所以∠DAC=90°,所以∠BAD=∠BAC+∠DAC=45°+90°=135°.故答案为135°.点睛:本题考查了勾股定理和勾股定理的逆定理的综合运用,直角三角形中已知两边的长,可用勾股定理求第三边的长,三角形中,已知三边的长,可用勾股定理的逆定理判定它是不是直角.21、﹣【解析】

直接化简二次根式,进而合并得出答案.【详解】原式=4﹣3×3+2×2=﹣.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.22、(2)P(,);(2);(3)(,)【解析】

(2把k=2代入l2解析式,当k=2时,直线l2为y=x+2.与l2组成方程组,解这个方程组得:,∴P(,);(2)当y=0时,kx+2k=0,∵k≠0,∴x=-2,∴C(-2,0),OC=2,当y=0时,-x+3=0,∴x=6,∴A(6,0),OA=6,过点P作PG⊥DF于点G,在△PDG和△ADE中,∴△PDG≌△ADE,得DE=DG=DF,∴PD=PF,∴∠PFD=∠PDF∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°∴∠PCA=∠PAC,∴PC=PA

过点P作PH⊥CA于点H,∴CH=CA=4,∴OH=2,当x=2时,y=−×2+3=2代入y=kx+2k,得k=;(3)在Rt△PMC和Rt△PQR中,∴Rt△PMC≌Rt△PQR,∴CM=RQ,∴NR=NC,设NR=NC=a,则R(−a−2,a),代入y=−x+3,得−(−a−2)+3=a,解得a=8,设P(m,n),则解得∴P(,)考点:2.一次函数与二元一次方程组综合题;2.三角形全等的运用.23、证明见解析【解析】

直接连接BD,交AC于点O,利用平行四边形的性质得出OA=OC,OB=OD,进而得出四边形EBFD是平行四边形求出答案即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论