2024年福建省厦门市凤南中学八年级下册数学期末综合测试试题含解析_第1页
2024年福建省厦门市凤南中学八年级下册数学期末综合测试试题含解析_第2页
2024年福建省厦门市凤南中学八年级下册数学期末综合测试试题含解析_第3页
2024年福建省厦门市凤南中学八年级下册数学期末综合测试试题含解析_第4页
2024年福建省厦门市凤南中学八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年福建省厦门市凤南中学八年级下册数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为()A.3 B.2 C.1 D.-12.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b>1的解集为(

)A.x<0 B.x>0 C.x<2 D.x>23.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30 B.y=40x C.y=10+30x D.y=20x4.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b5.如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=()A.60° B.65° C.70° D.75°6.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为(

)A.9环与8环 B.8环与9环 C.8环与8.5环 D.8.5环与9环7.如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为()A. B. C. D.8.直线与轴的交点坐标是()A. B. C. D.9.已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形10.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差S甲2=3,S乙A.甲 B.乙 C.一样 D.不能确定二、填空题(每小题3分,共24分)11.若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.12.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.13.如图,在中,平分,,垂足为点,交于点,为的中点,连结,,,则的长为_____.14.(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.15.在Rt△ABC中,∠C=90°,∠A=30°,BC=2,D,E分别是AC,BC的中点,则DE的长等于_____.16.已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.17.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.18.若的三边长分别是6、8、10,则最长边上的中线长为______.三、解答题(共66分)19.(10分)一次函数CD:与一次函数AB:,都经过点B(-1,4).(1)求两条直线的解析式;(2)求四边形ABDO的面积.20.(6分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?21.(6分)如图,是的中线,,交于点,是的中点,连接.(1)求证:四边形是平行四边形;(2)若四边形的面积为,请直接写出图中所有面积是的三角形.22.(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.(8分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图;(2)写出被抽查学生的体育锻炼时间的众数和中位数;(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.25.(10分)如图,AB=12cm,AC⊥AB,BD⊥AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.26.(10分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】解:∵点A(2,m),∴点A关于x轴的对称点B(2,−m),∵B在直线y=−x+1上,∴−m=−2+1=−1,∴m=1,故选C.【点睛】此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.2、A【解析】

根据图形得出k<0和直线与y轴交点的坐标为(0,1),即可得出不等式的解集.【详解】∵从图象可知:k<0,直线与y轴交点的坐标为(0,1),

∴不等式kx+b>1的解集是x<0,

故选A.【点睛】考查了一次函数与一元一次不等式,能根据图形读出正确信息是解此题的关键.3、A【解析】

根据师生的总费用,可得函数关系式.【详解】解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选A.【点睛】本题考查了函数关系式,师生的总费用的等量关系是解题关键.4、B【解析】

根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5、D【解析】

由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.【详解】∵四边形ABCD是正方形,∴AB=AD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE(HL),∴∠BAF=∠DAE=90°-60°2=15°∴∠AED=75°,故选D.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.6、C【解析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】根据统计图可得:8出现了3次,出现的次数最多,则众数是8;∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.故选C.【点睛】本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.7、C【解析】分析:利用勾股定理求出对角线AC的长,再根据S菱形ABCD=•BD•AC=CD•AE,求出AE即可.详解:∵四边形ABCD是菱形,∴AB=CD=5,AC⊥BD,OB=OB=4,OA=OC,在Rt△AOB中,∵AB=5,OB=4,∴OA===3,∴AC=6,∴S菱形ABCD=⋅BD⋅AC=CD⋅AE,∴AE=,故选C.点睛:本题考查了菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求菱形的高,属于中考常考题型.8、A【解析】

根据直线与x轴的交点,y=0时,求得的x的值,就是直线与x轴相交的横坐标,计算求解即可.【详解】解:当y=0时,可得计算所以直线与x轴的交点为:故选A.【点睛】本题主要考查直线与坐标轴的相交问题,这是一次函数的常考点,与x轴相交,y=0,与y轴相交,则x=0.9、A【解析】

根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.【详解】解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,所以a﹣b=0或b﹣c=0,得到a=b或b=c,所以三角形为等腰三角形,故选:A.【点睛】本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.10、B【解析】

根据方差的定义,方差越小数据越稳定.【详解】解:∵两人命中环数的平均数都是7,方差S甲2=3,S乙2=1.8,∴S甲2>S乙2,∴射击成绩较稳定的是乙;故选:B.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每小题3分,共24分)11、1;【解析】

根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.【详解】解:∵等腰三角形的两条边长分别为3cm,8cm,

∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,

∴等腰三角形的周长=16+16+8=1cm.

故答案为1.【点睛】本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.12、y=﹣4x﹣1【解析】

根据上加下减的法则可得出平移后的函数解析式.【详解】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【点睛】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.13、6.5【解析】

由条件“BF平分∠ABC,AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB),再由条件“E为AC的中点”,可判定DE是三角形AGB的中位线,由此可得GC=2DE,进而可求出BC的长.【详解】∵BF平分∠ABC,AG⊥BF,∴△ABG是等腰三角形,∴AB=GB=4cm,∵BF平分∠ABC,∴AD=DG,∵E为AC的中点,∴DE是△AGB的中位线,∴DE=CG,∴CG=2DE=5cm,∴BC=BG+CG=4+2.5=6.5cm,故答案为6.5【点睛】本题考查三角形的性质,解题关键在于判定三角形ABG是等腰三角形14、2【解析】

解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合.可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.15、1【解析】

根据直角三角形的性质及三角形的中位线即可求解.【详解】解:∵∠C=90°,∠A=30°,∴AB=1BC=4,∵D,E分别是AC,BC的中点,∴DE=AB=1,故答案为:1.【点睛】此题主要考查三角形的中位线,解题的关键是熟知含30°的直角三角形的性质.16、1【解析】

关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.【详解】解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,(a+b)2014=(﹣1)2014=1,故答案为:1.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17、2.【解析】

根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案为2.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用.18、1【解析】

根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.【详解】解:,,,这个三角形是直角三角形,斜边长为10,最长边上的中线长为1,故答案为:1.【点睛】本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.三、解答题(共66分)19、(1)直线CD的解析式为:;直线AB的解析式为:;(2)四边形ABDO的面积为7.5.【解析】

(1)将B(﹣1,4)代入一次函数CD:与一次函数AB:,可以得到关于k、b的二元一次方程组,解方程组即可得到k、b的值,即可求出两条直线的解析式.(2)由图可知四边形ABDO不是规则的四边形,利用割补法得到,分别算出△ABC与△DOC的面积即可算出答案.【详解】解:(1)∵一次函数CD:与一次函数AB:,都经过点B(﹣1,4),∴将点B(﹣1,4)代入一次函数CD:与一次函数AB:,可得:解得:;∴直线CD的解析式为:;直线AB的解析式为:;(2)∵点A为直线AB与x轴的交点,令y=0得:解得:,∴A(﹣3,0);∵C为直线CD与x轴的交点,令y=0得:解得:,∴C(3,0);∵D为直线CD与y轴的交点,令x=0得y=3∴D(0,3);∴AC=6,OC=3,OD=3;由图可知;∴四边形ABDO的面积为7.5.【点睛】本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.20、(1)A,B单价分别是360元,540元;(2)34件.【解析】

(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x,y的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥,因此,A种型号健身器材至少购买34套.【点睛】本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.21、(1)见解析;(2),,,【解析】

(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)根据面积公式解答即可.【详解】证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵四边形ABCE的面积为S,∵BD=DC,∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22、(1)见解析;(2)(2)①甲;②乙;③选乙;理由见解析.【解析】试题分析:(1)分别根据方差公式、中位数的定义以及算术平均数的计算方法进行计算即可得解;(2)①在平均数相等的情况下,方差小的成绩稳定,比较方差可得结论;②在平均数相等的情况下,中位数大的成绩好,比较中位数可得结论;③根据数据特征、折线图的趋势和命中9环以上的次数来进行综合判断,继而选出参赛队员.解:(1)平均数方差中位数甲1.2乙77.5(2)①甲;②乙;③选乙;理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙23、见解析【解析】

分析:证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD.在△ABE和△ACD中,∵AB=AC,AE=AD,∠BAE=∠CAD,∴△ABE≌△ACD(SAS).∴BE=CD.又∵DE=BC,∴四边形BCDE为平行四边形.如图,连接BD,CE,在△ACE和△ABD中,∵AC=AB,AE=AD,∠CAE=∠BAD,∴△ACE≌△ABD(SAS),∴CE=BD.∴四边形BCED为矩形(对角线相等的平行四边形是矩形).24、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名【解析】

(1)本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数=抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;(3)该校学生一周体育锻炼时间不低于9小时的估计人数

=该校学生总数×一周体育锻炼时间不低于9小时的频率.【详解】(1)解:本次抽查的学生共有8÷20%=40(名)一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)条形图补充如下:(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5(3)解:1800×=900(名)答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论