版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市高阳县2024年八年级数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x﹣1 D.y=﹣x+102.下列曲线中不能表示y与x的函数的是()A. B. C. D.3.若代数式在实数范围内有意义,则的取值范围是()A. B. C. D.且4.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,165.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有()A. B. C. D.6.顺次连接矩形四边中点得到的四边形一定是()A.梯形 B.正方形 C.矩形 D.菱形7.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.菱形C.等腰直角三角形 D.平行四边形8.如图,在平面直角坐示系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分別为1,2,反比例函数的图像经过A,B两点,则菱形ABCD的边长为()A.1 B. C.2 D.9.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3 B.2 C.2 D.10.已知,则(b+d≠0)的值等于()A. B. C. D.11.下列方程是一元二次方程的是()A. B. C. D.12.如图,O是正六边形ABCDEF的中心,下列三角形中可由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF二、填空题(每题4分,共24分)13.计算所得的结果是______________。14.将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.15.分式x2-9x+3的值为0,那么x16.如果多项式是一个完全平方式,那么k的值为______.17.已知等腰三角形的周长为24,底边长y关于腰长x的函数表达式(不写出x的取值范围)是________.18.如图,已知中,,点为的中点,在线段上取点,使与相似,则的长为______________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.(1)求证:四边形ADCE是矩形.(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.20.(8分)(1)(2)21.(8分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图根据以上信息,整理分析数据如下:平均数(分中位数(分众数(分小学组85100中学组85(1)写出表格中,,的值:,,.(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.22.(10分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?23.(10分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.24.(10分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?25.(12分)如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.26.如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2(2)能围成总面积为240m2的长方形花圃吗?说明理由
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据平行直线的解析式的k值相等求出k,然后把点P(﹣1,2)的坐标代入一次函数解析式计算即可得解.【详解】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,∴k=﹣1,∵一次函数过点(8,2),∴2=﹣8+b解得b=1,∴一次函数解析式为y=﹣x+1.故选:D.【点睛】此题考查的是一次函数的图象及性质和求一次函数的解析式,掌握平行直线的解析式的k值相等和利用待定系数法求一次函数解析式是解决此题的关键.2、C【解析】
函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.【详解】当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.【点睛】函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。3、D【解析】分析:根据被开方数大于等于1,分母不等于1列式计算即可得解.详解:由题意得,x+1≥1且x≠1,解得x≥-1且x≠1.故选D.点睛:本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.4、D【解析】
根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【详解】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.【点睛】本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.5、D【解析】
由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【详解】∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正确,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正确,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正确,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,综上所述:正确的结论有①②③④,故选D.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.6、D【解析】
根据顺次连接矩形的中点,连接矩形的对边上的中点,可得新四边形的对角线是互相垂直的,并且是平行四边形,所以可得新四边形的形状.【详解】根据矩形的中点连接起来首先可得四边是相等的,因此可得四边形为菱形,故选D.【点睛】本题主要考查对角线互相垂直的判定定理,如果四边形的对角线互相垂直,则此四边形为菱形.7、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、等边三角形,是轴对称图形,不是中心对称图形,故此选项错误;B、菱形,是轴对称图形,也是中心对称图形,故此选项正确;C、等腰直角三角形,是轴对称图形,不是中心对称图形,故此选项错误;D、平行四边形,不是轴对称图形,是中心对称图形,故此选项错误.故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、B【解析】
过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE,BE,再根据勾股定理得出答案.【详解】解:过点A作x轴的垂线,与CB的延长线交于点E,
∵A,B两点在反比例函数的图象上且横坐标分别为1,2,
∴A,B纵坐标分别为2,1,
∴AE=1,BE=1,
∴AB==.故选B.【点睛】本题考查菱形的性质以及反比例函数图象上点的坐标特征,熟练掌握菱形的性质以及反比例函数图象上点的坐标特征是解题的关键.9、D【解析】
作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.10、B【解析】
由已知可知:5b=7a,5d=7c,得到(b+d)的值.【详解】由,得5b=7a,5d=7c,所以故选B.【点睛】本题考查分式的基本性质,学生们熟练掌握即可.11、A【解析】
根据一元二次方程的定义解答即可.【详解】解:根据一元二次方程的定义:即含有一个未知数,且未知数的次数为1,可见只有A符合,故答案为A.【点睛】本题考查了一元二次方程的定义,即理解只有一个未知数且未知数的次数为1是解答本题的关键.12、C【解析】
利用正六边形的性质得到图中的三角形都为全等的等边三角形,然后利用平移的性质可对各选项进行判断.【详解】解:∵O是正六边形ABCDEF的中心,∴AD∥BC,AF∥CD∥BE,∴△OAF沿FO方向平移可得到△OBC.故选:C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.二、填空题(每题4分,共24分)13、1【解析】
由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【详解】原式1.故答案为:1.【点睛】本题考查了二次根式的乘除法运算;由于后两项互为倒数,有些同学往往先将它们约分,从而得出结果为5的错误结论,需注意的是同级运算要从左到右依次计算.14、或2【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.【详解】当点E在线段AB上,如图1,连结CE,∵AB=4,BE=1,∴AE=3,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=3,在Rt△BCE中,BC=;当点E在线段AB的延长线上,如图2,连结CE,∵AB=4,BE=1,∴AE=5,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=5,在Rt△BCE中,BC=,∴BC的长为或.【点睛】本题考查折叠问题,分情况解答是解题关键.15、2【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得:x2﹣9=1且x+2≠1,解得x=2.故答案为:2.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.16、8或-4【解析】
根据完全平方公式的定义即可求解.【详解】=为完全平方公式,故=±6,即得k=8或-4.【点睛】此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.17、y=24-2x【解析】分析:根据周长等于三边之和可得出底边长y关于腰长x的函数表达式.详解:由题意得,y+x+x=24,∴y=24-2x.故答案为:y=24-2x.点睛:本题考查了列一次函数关系式,熟练掌握周长等于三边之和是解答本题的关键.18、或【解析】
根据题意与相似,可分为两种情况,△AMN∽△ABC或者△AMN∽△ACB,两种情况分别列出比例式求解即可【详解】∵M为AB中点,∴AM=当△AMN∽△ABC,有,即,解得MN=3当△AMN∽△ACB,有,即,解得MN=故填3或【点睛】本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论三、解答题(共78分)19、(1)证明见解析;(2)1.【解析】分析:(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.详解:(1)∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)∵四边形ADCE是矩形,∴AO=EO,∴△AOE为等边三角形,∴AO=4,故AC=1.点睛:本题考查了矩形的判定和性质,二者结合是常见的出题方式,要注意灵活运用等边三角形的性质、等腰三角形的性质和三角形中位线的性质.20、(1);(2)【解析】
(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;(2)首先化简二次根式,然后先将括号中二次根式相减,然后再除即可得出答案.【详解】解:(1)原式(2)原式【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.21、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.【解析】
(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,(2)从平均数和中位数两个方面进行比较、分析得出结论,(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.【详解】(1)中学组的平均数分;小学组的成绩:70、75、80、100、100因此中位数为:80;中学组出现次数最多的分数是1分,所有众数为1分;故答案为:1,80,1.(2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,因此从平均数和中位数进行分析,中学组的决赛成绩较好;答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.(3),中学组的比较稳定.答:中学组代表队选手成绩较稳定.【点睛】考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.22、(1)40,15,1°;(2)35,1;(3)50双.【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;10°×10%=1°;故答案为:40,15,1°.(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,∴中位数为(1+1)÷2=1;故答案为:35,1.(3)∵在40名学生中,鞋号为1的学生人数比例为25%,∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,则计划购买200双运动鞋,1号的双数为:200×25%=50(双).【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23、(1)y=﹣2x+1(2)18元【解析】
(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某区域销售总代理合同书
- 校园空调租赁合同范本
- 供方购销合同范本
- 保安服务劳动合同
- 淘宝代运营服务合同年
- 药品物流运输合同
- 合同欺诈的定义
- 承包土地合同咋写
- 论预防未成年人犯罪的五阶段模式
- 《车辆抵押借款合同范本》
- 课题申报书:数智赋能高职院校思想政治理论课“金课”实践路径研究
- H3CNE认证考试题库官网2022版
- 感统训练培训手册(适合3-13岁儿童)
- 牛客:2024年智能制造校园招聘白皮书
- 住院病人烫伤的应急演练
- 新入职消防员考核试卷题库(240道)
- 海员的营养-1315医学营养霍建颖等讲解
- 2023年广东省招聘事业单位人员考试真题及答案
- 幼儿平衡车训练课程设计
- 创业计划路演-美甲
- 梁山伯与祝英台小提琴谱乐谱
评论
0/150
提交评论