




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾市海丰县2024年数学八年级下册期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个圆锥形的圣诞帽高为10cm,母线长为15cm,则圣诞帽的表面积为()A.75cm2 B.150cm2 C.150cm2 D.75cm22.小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间(小时)之间的函数关系的大致图象是()A. B. C. D.3.如图,将一个含有角的直角三角板的直角顶点放在一张宽为的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成角,则三角板最长的长是()A. B. C. D.4.要使分式有意义,应满足的条件是()A. B. C. D.5.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.若分式有意义,则x,y满足()A.2x≠y B.x≠0且y≠0 C.2x=y D.2x+y=07.如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是()A.7 B.3 C.3.5 D.48.顺次连接对角线相等的四边形的各边中点,所形成的四边形是A.平行四边形 B.菱形 C.矩形 D.正方形9.将100个数据分成①-⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数4812241873那么第④组的频率为()A.0.24 B.0.26 C.24 D.2610.边长为3cm的菱形的周长是()A.15cm B.12cm C.9cm D.3cm11.如图,点为的平分线上的一点,于点.若,则到的距离为()A.5 B.4 C.3.5 D.312.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是10二、填空题(每题4分,共24分)13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.14.已知一个直角三角形的两边长分别为8和6,则它的面积为_____.15.如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.16.学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.17.计算()•()的结果是_____.18.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.三、解答题(共78分)19.(8分)请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.20.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.21.(8分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)1号2号3号4号5号平均数方差八(1)班13914815016015315046.8八(5)班150139145147169150103.2根据以上信息,解答下列问题:(1)求两班的优秀率及两班数据的中位数;(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.22.(10分)某类儿童服装以每件40元的价格购进800件,售价为每件80元,五月售出200件.六月,批发商决定采取“降价促销”的方式喜迎“六一”,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;七月,批发商将对剩余的童装一次性清仓销售,清仓时单价为40元,设六月单价降低x元(1)填表时间五月六月七月清仓单价(元/件)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么六月的单价应是多少元?23.(10分)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.24.(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.25.(12分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.26.某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:(1)求y1与y2的函数关系式;(2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?(3)如果你是营业员,你会如何选择支付薪水的方式?为什么?
参考答案一、选择题(每题4分,共48分)1、A【解析】
利用圆锥的高,母线长,底面半径组成直角三角形可求得圆锥底面半径,圆锥的侧面积=底面周长×母线长÷1.【详解】解:高为10cm,母线长为15cm,由勾股定理得,底面半径==5cm,底面周长=10πcm,
侧面面积=×10π×15=75πcm1.
故选:A.【点睛】本题考查圆锥的计算,利用勾股定理,圆的周长公式和圆锥侧面积公式求解.2、C【解析】
根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【详解】A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选C.【点睛】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.3、D【解析】
过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,
在直角三角形ADC中,
∵∠CAD=30°,
∴AC=2CD=2×2=4,
又∵三角板是有45°角的三角板,
∴AB=AC=4,
∴BC2=AB2+AC2=42+42=32,
∴BC=,
故选D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.4、C【解析】
直接利用分式有意义的条件得出答案.【详解】要使分式有意义,
则x-1≠0,
解得:x≠1.
故选:C.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.5、C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.6、A【解析】
根据分母不能为零,可得答案.【详解】由题意,得2x﹣y≠0,解得y≠2x,故选A.【点睛】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.7、D【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.【点睛】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.8、B【解析】
菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【详解】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.【点睛】此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.9、A【解析】
先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷总数进行计算.【详解】解:根据表格中的数据,得第④组的频数为100−(4+8+12+1+18+7+3)=1,所以其频率为1÷100=0.1.故选:A.【点睛】本题考查频数、频率的计算方法.用到的知识点:各组的频数之和等于数据总数;频率=频数÷总数.10、B【解析】
由菱形的四条边长相等可求解.【详解】解:∵菱形的边长为3cm∴这个菱形的周长=4×3=12cm故选:B.【点睛】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.11、B【解析】
如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【详解】如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选B.【点睛】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.12、A【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.二、填空题(每题4分,共24分)13、x≤1.【解析】
将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【详解】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1,故答案为:x≤1.【点睛】本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.14、24或【解析】
根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解,再求三角形面积.【详解】解:(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,则它的面积为:×6×8=24;(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2,则它的面积为:×6×2=6.故答案为:24或6.【点睛】本题考查了勾股定理解直角三角形以及直角三角形面积求法,当已知条件中没有明确哪是斜边时,要注意分类讨论.15、2【解析】
由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【详解】解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;
故答案为2.【点睛】本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.16、250【解析】
由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.【详解】400÷40%=1000(人),1000×(1-40%-35%)=1000×25%=250(人),故答案为250.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17、-2【解析】
利用平方差公式进行展开计算即可得.【详解】==-2,故答案为:-2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.18、1.【解析】
根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.【详解】∵a+b=3,ab=2,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1故答案为:1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(共78分)19、(1)作图见解析;(2)作图见解析.【解析】(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形.20、(1)见解析;(2);(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.21、(1)八(1)班的优秀率为,八(2)班的优秀率为八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖【解析】
(1)根据表中信息可得出优秀人数和总数,即可得出优秀率;首先将成绩由低到高排列,即可得出中位数;(2)直接根据表中信息,分析即可.【详解】(1)八(1)班的优秀率为,八(2)班的优秀率为∵八(1)班的成绩由低到高排列为139,148,150,153,160八(2)班的成绩由低到高排列为139,145,147,150,169∴八(1),八(2)班的中位数分别为150,147(2)八(1)班获冠军奖.理由:从优秀率看,八(1)班的优秀人数多;从中位数来看,八(1)班较大,一般水平较高;从方差来看,八(1)班的成绩也比八(2)班的稳定∴八(1)班获冠军奖.【点睛】此题主要考查数据的处理,熟练掌握,即可解题.22、(1)80﹣x,200+1x,800﹣200﹣(200+1x)或400﹣1x;(2)六月的单价应该是70元.【解析】
(1)根据题意直接用含x的代数式表示即可;(2)销售额﹣进价=利润,作为相等关系列函数关系式得出即可.【详解】解:(1)80﹣x,200+1x,800﹣200﹣(200+1x)或400﹣1x.故答案是:时间第一个月第二个月清仓时单价(元)8080﹣x40销售量(件)200200+1x800﹣200﹣(200+1x)或400﹣1x(2)根据题意,得(40﹣x)(200+1x)=9000,解得x1=x2=1.当x=1时,80﹣x=70>40答:六月的单价应该是70元.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,有关销售问题中的等量关系一般为:利润=售价﹣进价.23、(1)见解析(2)【解析】
试题分析:(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】试题解析:(1)证明:在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=AD.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=CD=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE=.考点:平行四边形的判定与性质.24、(1)证明见解析(2)△CEF是直角三角形【解析】(1)由正方形的性质、等腰三角形的性质可得AB=CB,BE=BF,再通过等量相减,即可得出∠ABF=∠CBE,由SAS即可证出△ABF≌△CBE;(2)求∠CEF=90°,即可证出△CEF是直角三角形.证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB∴△ABF≌△CBE(SAS).(2)△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.25、(1)见解析;(2)见解析;(3)不一定成立,见解析.【解析】
(1)求证AB=AC,就是求证∠B=∠C,利用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC即可;
(2)首先得出Rt△OEB≌Rt△OFC,则∠OBE=∠OCF,由等边对等角得出∠OBC=∠OCB,进而得出∠ABC=∠ACB,由等角对等边即可得AB=AC;
(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中历史 第一单元 第1课 第一次世界大战的爆发教学实录 新人教版选修3
- 小学生拥军教育
- 计算机与网络技术类学业水平考试复习题(附答案)
- 茂名市第十中学高一上学期期中考试语文试题
- 小学生禁毒教育资料
- 四通物流工作总结
- 幼儿园暑假假期安全教育
- 梅毒防控知识课件
- 企业员工工作总结(9篇)
- 公会签署合同标准文本
- T-CSCP 0019-2024 电网金属设备防腐蚀运维诊断策略技术导则
- 2025中考道德与法治核心知识点+易错易混改错
- 授权独家代理商合作协议2025年
- 《技术分析之均线》课件
- 小儿高热惊厥护理查房
- 2025年度全款文化演出门票购买合同4篇
- 临床基于高级健康评估的高血压Ⅲ级合并脑梗死患者康复个案护理
- 2025年厦门建发股份有限公司招聘笔试参考题库含答案解析
- 2025年中国EAM系统行业发展前景预测及投资战略研究报告
- 精准医疗复合手术室
- 《基于三维荧光技术的水环境污染源深度溯源技术规范》
评论
0/150
提交评论