安徽省芜湖市名校2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
安徽省芜湖市名校2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
安徽省芜湖市名校2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
安徽省芜湖市名校2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
安徽省芜湖市名校2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省芜湖市名校2024届八年级数学第二学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或842.已知三角形三边长为a,b,c,如果a-6+|b﹣8|+(c﹣10)2=0,则△ABC是()A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h4.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.5.若代数式在实数范围内有意义,则实数的取值范围是()A. B. C. D.6.六边形的内角和是()A.540°B.720°C.900°D.360°7.如图,在平面直角坐标系中,已知点A(1,3),B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A.1.4 B.1.5 C.1.6 D.1.78.已知点A、B的坐标分别为(2,5),(﹣4,﹣3),则线段AB的长为()A.9 B.10 C.11 D.129.下列计算正确的是()A. B.=3 C. D.10.如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是()A. B. C. D.11.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是().A.(0,) B.(,0) C.(8,20) D.(,)12.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2 B.13 C.2+6 D.26二、填空题(每题4分,共24分)13.如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.14.一组数据:的方差是__________.15.如图,若直线与交于点,则根据图象可得,二元一次方程组的解是_________.16.一组数据:,计算其方差的结果为__________.17.如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.18.关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______三、解答题(共78分)19.(8分)定义:点关于原点的对称点为,以为边作等边,则称点为的“等边对称点”;(1)若,求点的“等边对称点”的坐标;(2)若点是双曲线上动点,当点的“等边对称点”点在第四象限时,①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;②如图(2),已知点,,点是线段上的动点,点在轴上,若以、、、这四个点为顶点的四边形是平行四边形时,求点的纵坐标的取值范围.20.(8分)如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求点A,B,C的坐标;(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;(3)当△CBD为等腰三角形时直接写出D坐标.21.(8分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出这种商品多少件?22.(10分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)23.(10分)已知△ABC中,∠ACB=90°,∠CAB=30°,以AC,AB为边向外作等边三角形ACD和等边三角形ABE,点F在AB上,且到AE,BE的距离相等.(1)用尺规作出点F;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接EF,DF,证明四边形ADFE为平行四边形.24.(10分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如右表所示:图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二.(2)请计算每名候选人的得票数.(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?测试项目测试成绩/分甲乙丙笔试929095面试85958025.(12分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.26.如图,已知平行四边形ABCD延长BA到点E,延长DC到点E,使得AE=CF,连结EF,分别交AD、BC于点M、N,连结BM,DN.(1)求证:AM=CN;(2)连结DE,若BE=DE,则四边形BMDN是什么特殊的四边形?并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由于高的位置不确定,所以应分情况讨论.【详解】(1)△ABC为锐角三角形,高AD在三角形ABC的内部,∴BD==9,CD==5,∴△ABC的面积为=84,(2)△ABC为钝角三角形,高AD在三角形ABC的外部,∴BD==9,CD==5,∴△ABC的面积为=24,故选C.【点睛】此题主要考察勾股定理的应用,解题的关键是根据三角形的形状进行分类讨论.2、C【解析】因为a-6+|b-8|+(c-10)2=0,所以有(a-6)

2

=0,|b-8|=0,|c-10|=0,所以a=6,b=8,c=10,因为

a2+b2=c2

,所以ABC的形状是直角三角形,故选B.3、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.4、D【解析】

根据三角形内角和定理以及直角三角形的性质即可求出答案.【详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【点睛】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.5、B【解析】

直接利用分式有意义的条件进而得出答案.【详解】∵代数式在实数范围内有意义,∴a-1≠0,∴a≠1.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.6、B【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.7、A【解析】

由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围即可判断.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.∵1.4<,∴n的值不可能是1.4.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.8、B【解析】

根据两点间的距离公式即可得到结论.【详解】∵点A、B的坐标分别为(2,5),(-4,-3),∴AB==10,故选B.【点睛】本题考查了坐标与图形性质,两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.9、D【解析】

根据二次根式的运算法则逐一计算可得.【详解】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选D.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.10、C【解析】

把B点的横坐标减2,纵坐标加1即为点B´的坐标.【详解】解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,

∴点B´的坐标是(−3,2).

故选:C.【点睛】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.11、A【解析】∵点A(2,4)在函数y=kx-2的图象上,

∴2k-2=4,解得k=3,

∴此函数的解析式为:y=3x-2,

A选项:∵3×0-2=-2,∴此点在函数图象上,故本选项正确;

B选项:∵3×()-2=1.5≠0,∴此点在不函数图象上,故本选项错误;

C选项:∵3×(8)-2=22≠20,∴此点在不函数图象上,故本选项错误;

D选项:∵3×-2=-0.5≠,∴此点在不函数图象上,故本选项错误.

故选A.12、B【解析】

利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.【详解】解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,∴C′D′⊥BE,∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.二、填空题(每题4分,共24分)13、9.【解析】

作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=,即可得出结论.【详解】解:作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,

∴DE=DF,

又∵DE⊥AB于点E,DF⊥AC于点F,

∴∠AED=∠AFD=90°,

又∵AD=AD,

∴Rt△ADE≌Rt△ADF(HL),

∴AE=AF;∵∠MDN+∠BAC=180°,

∴∠AMD+∠AND=180°,

又∵∠DNF+∠AND=180°

∴∠EMD=∠FND,

又∵∠DEM=∠DFN,DE=DF,

∴△DEM≌△DFN,

∴S△DEM=S△DFN,

∴S四边形AMDN=S四边形AEDF,

∵,AD平分∠BAC,

∴∠DAF=30°,∴Rt△ADF中,DF=3,AF==3,

∴S△ADF=AF×DF=×3×3=,

∴S四边形AMDN=S四边形AEDF=2×S△ADF=9.故答案为9.【点睛】本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.14、.【解析】

根据方差的公式进行解答即可.【详解】解:==2019,==0.故答案为:0.【点睛】本题考查了方差的计算.15、【解析】

二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线L1与L2的交点P的坐标.【详解】解:根据题意知,

二元一次方程组的解就是直线l1与l2的交点P的坐标,

又∵P(2,1),

∴原方程组的解是:

故答案是:【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.16、【解析】

方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.【详解】解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.

故答案为:1.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、1:1【解析】

如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.【详解】解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.∵DE=AE,DF=FC,∴EF∥AC,EF:AC=1:2,∴S△DEF=S△DAC=×1S=S,同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,∴四边形EFQP是平行四边形,∴S平行四边形EFQP=1S,∴S△TPQ=S平行四边形EFQP=2S,∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,故答案为1:1.【点睛】本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.18、-3【解析】分析:根据常数项为0,且二次项系数不为0列式求解即可.详解:由题意得,,解之得,m=-3.故答案为:-3.点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.三、解答题(共78分)19、(1)或;(2)①;②或【解析】

(1)根据P点坐标得出P'的坐标,可求PP'=4;设C(m,n),有PC=P'C=24,通过解方程即可得出结论;(2)①设P(c,),得出P'的坐标,利用连点间的距离公式可求的长,设C(s,t),有,然后通过解方程可得,再根据消元c即可得xy=-6;②分AG为平行四边形的边和AG为平行四边形的对角线两种情况进行分类讨论.【详解】解:(1)∵P(1,),

∴P'(-1,-),

∴PP'=4,

设C(m,n),

∴等边△PP′C,

∴PC=P'C=4,解得n=或-,

∴m=-1或m=1.

如图1,观察点C位于第四象限,则C(,-1).即点P的“等边对称点”的坐标是(,-1).(2)①设,∴,∴,设,,∴,∴,∴,∴,∴或,∴点在第四象限,,∴,令,∴,即;②已知,,则直线为,设点,设点,,即,,,构成平行四边形,点在线段上,;当为对角线时,平行四边形对角坐标之和相等;,,,即;当为边时,平行四边形,,,,即;当为边时,平行四边形,,,,而点在第三象限,,即此时点不存在;综上,或.【点睛】本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C的坐标是关键,数形结合解题是求yc范围的关键.20、(1)A(,),B(﹣1,0),C(4,0);(2)存在,=;(3)点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).【解析】

(1)将y=x+1与y=﹣x+3联立求得方程组的解可得到点A的坐标,然后将y=0代入函数解析式求得对应的x的值可得到点B、C的横坐标;(2)当OE∥AD时,存在四边形EODA为平行四边形,然后依据平行线分线段成比例定理可得到=;(3)当DB=DC时,点D在BC的垂直平分线上可先求得点D的横坐标;即AC与y轴的交点为F,可求得CF=BC=F,当点D与点F重合或点D与点F关于点C对称时,三角形BCD为等腰三角形,当BD=BC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,从而可求得点D的横坐标.【详解】(1)将y=x+1与y=﹣x+3联立得:,解得:x=,y=,∴A(,).把y=0代入y=x+1得:x+1=0,解得x=﹣1,∴B(﹣1,0).把y=0代入y=﹣x+3得:﹣x+3=0,解得:x=4,∴C(4,0).(2)如图,存在点E使EODA为平行四边形.∵EO∥AC,∴==.(3)当点BD=DC时,点D在BC的垂直平分线上,则点D的横坐标为,将x=代入直线AC的解析式得:y=,∴此时点D的坐标为(,).如图所示:FC==5,∴BC=CF,∴当点D与点F重合时,△BCD为等腰三角形,∴此时点D的坐标为(0,3);当点D与点F关于点C对称时,CD=CB,∴此时点D的坐标为(8,﹣3),当BD=DC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,解得x=4(舍去)或x=﹣,将x=﹣代入y=﹣x+3得y=,∴此时点D的坐标为(﹣,).综上所述点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).【点睛】本题主要考查的是一次函数的综合应用,利用平行线分线段成比例定理求解是解答问题(2)的关键;分类讨论是解答问题(3)的关键.21、(1);(2)50件.【解析】

(1)设该种商品每次降价的百分率为x,根据该种商品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,解之即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100−m)件,根据总利润=单件利润×销售数量结合两次降价销售的总利润不少于8000元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设每次降价的百分率为,则可得,∴,或(舍),∴该商品每次降低的百分率为.(2)设第一次降价后售出件,则第二次售出件.则第一次降价后单价为:(元/件),,解得:,∴第一次降价后至少要售出50件.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量间的关系,找出关于m的一元一次不等式.22、(1);(2);(3)摸到的两球颜色相同的概率【解析】

(1)直接利用概率公式计算;(2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;(3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.【详解】(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.(2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.(3)画树状图为:共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,所以摸到两球颜色相同的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23、(1)详见解析;(2)详见解析【解析】

(1)由“点F在AB上,且到AE,BE的距离相等”可知作∠AEB的角平分线与AB的交点即为点F;(2)先证明△ACB≌△AFE,再由全等三角形的性质得出AD∥EF,AD=EF,即可判定四边形ADFE为平行四边形.【详解】解:(1)如图,作∠AEB的角平分线,交AB于F点∴F为所求作的点(2)如图,连接EF,DF,∵△ABE和△ACD都是等边三角形,∠ACB=90°,∠CAB=30°,EF平分∠AEB,∴∠DAE=150°,∠AEF=30°,∴△ACB≌△AFE∴∠DAE+∠AEF=180°,EF=AC∴AD∥EF,AD=AC=EF∴四边形ADFE为平行四边形【点睛】本题考查了角平分线的尺规作图、全等三角形的判定及性质、平行四边形的判定,解题的关键张熟练掌握上述知识点.24、(1)图见解析;(2)甲的得票数为68票,乙的得票数为60票,丙的得票数为56票;(3)甲的平均成绩为分,乙的平均成绩为分,丙的平均成绩为分;录取乙【解析】

(1)用1减去甲、丙和其他的得票数所占总票数的百分率即可求出乙的得票数占总票数的百分率,由表格可知:甲的面试成绩为85分,然后补全图一和图二即可;(2)用总票数乘各候选人的得票数所占的百分率即可;(3)根据题意,求出三人的加权平均分,然后比较即可判断.【详解】解:(1)乙的得票数占总票数的百分率为:1-34%-28%-8%=30%由表格可知:甲的面试成绩为85分,补全图一和图二如下:(2)甲的得票数为:200×34%=68(票)乙的得票数为:200×30%=60(票)丙的得票数为:200×28%=56(票)答:甲的得票数为68票,乙的得票数为60票,丙的得票数为56票.(3)根据题意,甲的平均成绩为:分乙的平均成绩为:分丙的平均成绩为:分∵∴乙的平均成绩高∴应该录取乙.【点睛】此题考查的是扇形统计图和条形统计图,结合扇形统计图和条形统计图得出有用信息和掌握加权平均

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论