版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建福州市台江区2024年数学八年级下册期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,下列结论不一定正确的是()A.∠1=∠2 B.∠1=∠3 C.AB=CD D.∠BAD=∠BCD2.将直线向下平移个单位长度得到新直线,则的值为()A. B. C. D.3.在菱形ABCD中,,点E为AB边的中点,点P与点A关于DE对称,连接DP、BP、CP,下列结论:;;;,其中正确的是A. B. C. D.4.下列各图中,∠1>∠2的是()A. B. C. D.5.若分式方程=2+的解为正数,则a的取值范围是()A.a>4 B.a<4 C.a<4且a≠2 D.a<2且a≠06.一次函数在平面直角坐标系内的图像如图所示,则k和b的取值范围是()A., B., C., D.,7.如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°8.若,则下列式子成立的是()A. B. C. D.9.如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+810.方程的解是()A.x=3 B.x=2 C.x=1 D.x=﹣111.把方程化成(x+m)2=n的形式,则m、n的值是()A.4,13 B.4,19 C.-4,13 D.-4,1912.如图,函数()和()的图象相交于点A,则不等式>的解集为()A.> B.< C.> D.<二、填空题(每题4分,共24分)13.若函数y=(m+1)x+(m2-1)(m为常数)是正比例函数,则m的值是____________。14.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.15.A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.16.在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上.已知C1(1,﹣1),C2(,),则点A3的坐标是_____.17.在中,,,,则__________.18.如图,在等腰梯形ABCD中,AD∥BC,AB=CD.点P为底边BC的延长线上任意一点,PE⊥AB于E,PF⊥DC于F,BM⊥DC于M.请你探究线段PE、PF、BM之间的数量关系:______.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B的“确定正方形”的示意图.(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.20.(8分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出关于原点的中心对称图形;(2)画出将绕点顺时针方向旋转90°得到的.(3)设为边上一点,在上与点对应的点是.则点坐标为__________.21.(8分)如图,直线交x轴于点A,直线CD与直线相交于点B,与x轴y轴分别交于点C,点D,已知点B的横坐标为,点D的坐标为.(1)求直线CD的解析式;(2)求的面积.22.(10分)计算:解方程:23.(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.24.(10分)如图,正方形中,经顺时针旋转后与重合.(1)旋转中心是点,旋转了度;(2)如果,,求的长.25.(12分)如图(甲),在正方形中,是上一点,是延长线上一点,且.(1)求证:;(2)在如图(甲)中,若在上,且,则成立吗?证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图(乙)四边形中,∥(>),,,点是上一点,且,,求的长.26.如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.
参考答案一、选择题(每题4分,共48分)1、B【解析】
由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.【详解】∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∠BAD=∠BCD∴∠1=∠1故选B.【点睛】本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.2、D【解析】
直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,解得n=1.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3、B【解析】
根据菱形性质和轴对称性质可得AP⊥DE,PA=PB,即DE垂直平分PA,由中垂线性质得,PD=CD,PE=AE,由三角形中线性质得PE=,得三角形ABP是直角三角形;由等腰三角形性质得,∠DAP=∠DPA,∠DCP=∠DPC,所以,∠DPA+∠DPC=∠DAP+∠DCP=.【详解】连接PE,因为,四边形ABCD是菱形,所以,AB=BC=CD=AD,因为,点P与点A关于DE对称,所以,AP⊥DE,PA=PB,即DE垂直平分PA,所以,PD=CD,PE=AE,又因为,E是AB的中点,所以,AE=BE,所以,PE=,所以,三角形ABP是直角三角形,所以,,所以,.因为DP不在菱形的对角线上,所以,∠PCD≠30〬,又DC=DP,所以,,因为,DA=DP=DC,所以,∠DAP=∠DPA,∠DCP=∠DPC,所以,∠DPA+∠DPC=∠DAP+∠DCP=,即.综合上述,正确结论是.故选B【点睛】本题考核知识点:菱形性质,轴对称性质,直角三角形中线性质.解题关键点:此题比较综合,要灵活运用轴对称性质和三角形中线性质和等腰三角形性质.4、D【解析】
根据等边对等角,对顶角相等,平行线的性质,三角形的一个外角大于任何一个与它不相邻的内角对各选项分析判断后利用排除法求解.【详解】解:A、∵AB=AC,∴∠1=∠2,故本选项错误;B、∠1=∠2(对顶角相等),故本选项错误;C、根据对顶角相等,∠1=∠3,∵a∥b,∴∠2=∠3,∴∠1=∠2,故本选项错误;D、根据三角形的外角性质,∠1>∠2,故本选项正确.故选D.5、C【解析】试题分析:去分母得:x=1x﹣4+a,解得:x=4﹣a,根据题意得:4﹣a>0,且4﹣a≠1,解得:a<4且a≠1.故选C.考点:分式方程的解.6、A【解析】
根据一次函数的图象经过的象限与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、三象限,
∴k>0,b>0.
故选A.【点睛】本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.7、B【解析】
据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【详解】,,又,中,,旋转角的度数为.故选:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.8、B【解析】
由,设x=2k,y=3k,然后将其代入各式,化简求值即可得到答案【详解】因为,设x=2k,y=3k∴,故A错,故B对,故C错,故D错选B【点睛】本题考查比例的性质,属于简单题,解题关键在于掌握由,设x=2k,y=3k的解题方法9、D【解析】
连接OO'交AE与点M,过点O'作O'H⊥OC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OH,O'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.【详解】解:连接OO'交AE与点M,过点O'作O'H⊥OC于点H,∴点E为OC中点,∴OE=EC=OC=3,在Rt△AOE中,OE=3,AO=4,∴AE==5,∵将△OAE沿AE翻折,使点O落在点O′处,∴AE垂直平分OO',∴OM=O'M,在Rt△AOE中,∵S△AOE=AO•OE=AE•OM,∴×3×4=×5×OM,∴OM=,∴OO'=,∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,∴∠MAO=∠O'OH,又∵∠AOE=∠OHO'=90°,∴△AOE∽△OHO',∴==,即==,∴OH=,O'H=,∴O'的坐标为(,),将点O'(,),C(6,0)代入y=kx+b,得,,解得,k=﹣,b=8,∴直线CO'的解析式为y=﹣x+8,故选:D.【点睛】本题考查了轴对称的性质,相似三角形的判定与性质,待定系数法等,解题关键是利用三角形相似的性质求出点O'的坐标.10、D【解析】
采用排除法和代入法相结合,即可确定答案。【详解】解:由x=1为增根,故排除C;A选项,当x=3,方程左边为1,右边为,显然不对;B选项,当x=2时,方程左边为2,右边,显然不对;当x=-1时,方程左边为-1,右边为-1,即D正确;故答案为D.【点睛】本题考查了分式方程的解法,但作为选择题,采用排除法和代入法也是一种不错的选择。11、C【解析】
根据配方的步骤把x2-8x+3=0配方变为(x+m)2=n的形式,即可得答案.【详解】x2-8x+3=0移项得:x2-8x=-3等式两边同时加上一次项系数一半的平方,得x2-8x+42=-3+42配方得:(x-4)2=13∴m=-4,n=13.故选C.【点睛】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、A【解析】试题解析:由图象可以看出当时,的图象在图象的上方,所以的解集为.故本题应选A.二、填空题(每题4分,共24分)13、2【解析】
根据正比例函数的定义列出方程m2-2=2且m+2≠2,依此求得m值即可.【详解】解:依题意得:m2-2=2且m+2≠2.解得m=2,故答案是:2.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2,自变量次数为2.14、【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等边三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四边形AECF是平行四边形,∵CE=BC-BE=3-2=1,∴S四边形AECF=CE•AM=,故答案为:.【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.15、23%【解析】
根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.【详解】解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,再根据题意可得:[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,整理组成方程组得:x+3y+6z=3359x+12y+19z=1240解得:z=355-3y7∵20≤x≤30,20≤y≤30,∴2657(约37.85则z=40或代入可得:x=20y=25z=40,或者x=21y=∵x、y、z均为整数,则只有x=20y=25则把起初A、B两瓶酒精混合后的浓度为:2000×20%+3000故答案为:23%.【点睛】本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.16、(,)【解析】试题解析:连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,∵C1(1,-1),C2(,),∴A1(1,1),A2(,),∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,将A1与A2的坐标代入y=kx+b中得:,解得:,∴直线解析式为y=x+,设B2G=A3G=t,则有A3坐标为(5+t,t),代入直线解析式得:b=(5+t)+,解得:t=,∴A3坐标为(,).考点:一次函数综合题.17、1【解析】
根据直角三角形中,30°所对的直角边是斜边的一半进行计算.【详解】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴AB=1BC=1.
故答案为:1.【点睛】此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.18、PE-PF=BM.【解析】
过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.【详解】解:PE-PF=BM.理由如下:过点B作BH∥CD,交PF的延长线于点H,如图∴∠PBH=∠DCB,∵PF⊥CD,BM⊥CD,∴BM∥FH,PH⊥BH,∴四边形BMFH是平行四边形,∠H=90°,∴FH=BM,∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,∴∠ABC=∠PBH,∵PE⊥AB,∴∠PEB=∠H=90°,又PB为公共边,∴△PBE≌△PBH(AAS),∴PH=PE,∴PE=PF+FH=PF+BM.即PE-PF=BM.【点睛】本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.三、解答题(共78分)19、(1)9;(2)OC⊥直线于点C;①;②;(3)【解析】
(1)求出线段MN的长度,根据正方形的面积公式即可求出答案;(2)根据面积求出,根据面积最小确定OC⊥直线于点C,再分情况分别求出b;(3)分两种情况:当点E在直线y=-x-2是上方和下方时,分别求出点P的坐标,由此得到答案.【详解】解:(1)∵M(0,1),N(3,1),∴MN∥x轴,MN=3,∴点M,N的“确定正方形”的面积为,故答案为:9;(2)∵点O,C的“确定正方形”面积为2,∴.∵点O,C的“确定正方形”面积最小,∴OC⊥直线于点C.①当b>0时,如图可知OM=ON,△MON为等腰直角三角形,可求,∴②当时,同理可求∴(3)如图2中,当正方形ABCD在直线y=-x-2的下方时,延长DB交直线y=-x-2于H,∴BH⊥直线y=-x-2,当BH=时,点E、F的“确定正方形”的面积的最小值是2,此时P(-6,0);如图3中,当正方形ABCD在直线y=-x-2的上方时,延长DB交直线y=-x-2于H,∴BH⊥直线y=-x-2,当BH=时,点E、F的“确定正方形”的面积的最小值是2,此时P(2,0),观察图象可知:当或时,所有点E、F的“确定正方形”的面积都不小于2【点睛】此题是一次函数的综合题,考查一次函数的性质,正方形的性质,正确理解题中的正方形的特点画出图象求解是解题的关键.20、(1)见解析;(2)见解析;(3)(b,-a).【解析】
(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,顺次连接即可;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;
(3)利用A与A2、B与B2、C与C2的坐标特征确定对应点的坐标变换规律,从而写出点P1坐标.【详解】解:(1)如图,△A1B1C1即为所作;
(2)如图,△A2B2C2即为所作;
(3)点P1坐标为(b,-a).
故答案为:(b,-a).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21、(1);(2).【解析】
(1)由直线解析式y=x+4及点B横坐标,求出点B纵坐标,再用待定系数法求出直线CD的解析式;(2)由直线y=x+4和直线y=2x-3分别求出点A,C的坐标,进一步求出线段AC的长度,再通过点B的纵坐标即可求出△ABC的面积.【详解】解:(1)中,当时,∴∵点D的坐标为设CD的解析式为∴∴,∴CD的解析式为(2)中,当时,,∴直线中,当时,,∴∴∴【点睛】本题考查了一次函数上的点的求法,待定系数法求一次函数解析式,三角形的面积等,解题关键是能够熟练掌握一次函数图象上的点的求法.22、(1);(2),【解析】
(1)利用二次根式的混合运算法则及顺序进行计算即可;(2)利用提公因式法求解即可.【详解】(1)==;(2)提取公因式可得:,∴或,解得:,.【点睛】本题主要考查了二次根式的混合运算以及解一元二次方程,熟练掌握相关方法是解题关键.23、见解析【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.24、(1)A,90;(2).【解析】
(1)根据正方形的性质得AB=AD,∠BAD=90°,则根据旋转的定义得到△ADE绕点A顺时针旋转90°后与△ABF重合;
(2)根据旋转的性质得BF=DE,S△ABF=S△ADE,利用CF=CB+BF=8得到BC+DE=8,再加上CE=CD-DE=BC-DE=4,于是可计算出BC=6,于是得到结论.【详解】解:(1)∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴△ADE绕点A顺时针旋转90°后与△ABF重合,
即旋转中心是点A,旋转了90度;
故答案为A,90;
(2)∵△ADE绕点A顺时针旋转90°后与△ABF重合,
∴BF=DE,S△ABF=S△ADE,
而CF=CB+BF=8,
∴BC+DE=8,
∵CE=CD-DE=BC-DE=4,
∴BC=6,
∴AC=BC=6.故答案为(1)A,90;(2).【点睛】本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心;旋转方向;旋转角度.也考查了正方形的性质.25、(1)见解析;(1)成立,理由见解析;(3)5【解析】分析:(1)因为ABCD为正方形,所以CB=CD,∠B=∠CDA=90°,又因为DF=BE,则△BCE≌△DCF,即可求证CE=CF;(1)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,则△ECG≌△FCG,故GE=BE+GD成立;(3)①过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.详解:(1)在正方形ABCD中CB=CD,∠B=∠CDA=90°,∴∠CDF=∠B=90°.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年湖北客运从业资格证能开什么车
- 2024年度智能制造LED指示灯采购合同
- 2024年建筑外墙亮化工程劳务合同
- 人教部编版六年级语文上册《语文园地三》精美课件
- 习作我和-过一天说课稿
- 道路信号灯维护服务方案
- 六年级劳动教育《做蛋糕》备课说课稿
- 2024年式精装仓库租赁合同范本
- 2024年建筑项目维护保养合同
- 2024年度八宝山殡仪馆鲜花制品采购合同的签署与生效合同
- 高中英语外研版高中选修7Scopeandsequence-英语长难句教学反思
- 科技金融项目银行工作总结汇报PPT模板
- 品质异常升级管理规定
- 实验室ISO17025认证推进计划表
- 1.春夏秋冬 教案(两课时)+说课稿+练习(含答案)+素材
- GB 31652-2021 食品安全国家标准 即食鲜切果蔬加工卫生规范
- DBJ41∕T 188-2017 城市轨道交通工程安全监测技术规程
- 新企业会计准则2022年(原文+指南+说明)企业会计准则指南2022
- 29 名著阅读 《西游记》 2022暑假小升初衔接精品导学导练(原卷版+解析版)
- 颅内压增高的临床表现PPT课件
- 接待与会务工作礼仪培训及规范-PPT课件
评论
0/150
提交评论