随州市重点中学2024年八年级下册数学期末学业质量监测模拟试题含解析_第1页
随州市重点中学2024年八年级下册数学期末学业质量监测模拟试题含解析_第2页
随州市重点中学2024年八年级下册数学期末学业质量监测模拟试题含解析_第3页
随州市重点中学2024年八年级下册数学期末学业质量监测模拟试题含解析_第4页
随州市重点中学2024年八年级下册数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

随州市重点中学2024年八年级下册数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm22.已知xy=1A.32 B.13 C.23.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时4.某班名学生的身高情况如下表:身高人数则这名学生身高的众数和中位数分别是()A. B. C. D.5.若分式有意义,则实数x的取值范围是()A.x>5 B.x<5 C.x=5 D.x≠56.与是同类二次根式的是()A. B. C. D.7.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A. B. C. D.8.某中学制作了108件艺术品,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个.设B型包装箱每个可以装x件艺术品,根据题意列方程为()A. B.C. D.9.如图,中,,点D在AC边上,且,则的度数为A. B. C. D.10.若关于x的方程x2+6x-a=0无实数根,则a的值可以是下列选项中的()A.-10 B.-9 C.9 D.10二、填空题(每小题3分,共24分)11.若一次函数的图象不经过第二象限,则的取值范围为_________0.12.已知双曲线经过点(-1,2),那么k的值等于_______.13.如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.14.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5cm,高为12cm,吸管放进杯子里,杯口外面至少要露出5.2cm,则吸管的长度至少为_______cm.15.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若△ABC的周长为10cm,则△OEC的周长为_____.16.如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________

。17.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为_____.18.如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.三、解答题(共66分)19.(10分)如图,小明为测量一棵树的高度,他在距树处立了一根高为的标杆,然后小明调整自己的位置至,此时他与树相距,他的眼睛、标杆的顶端和树顶端在同一直线上.已知,求树的高度.20.(6分)某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)第一次30403800第二次40303200(1)求、两种商品每件的进价分别是多少元?(2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进、两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.21.(6分)某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.(1)求每次降价的百分率;(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.22.(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(8分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.24.(8分)某G20商品专卖店每天的固定成本为400元,其销售的G20纪念徽章每个进价为3元,销售单价与日平均销售的关系如下表:销售单价(元)45678910日平均销售量(瓶)560520480440400360320(1)设销售单价比每个进价多x元,用含x的代数式表示日销售量.(2)若要使日均毛利润达到1840元(毛利润=总售价﹣总进价﹣固定成本),且尽可能多的提升日销售量,则销售单价应定为多少元?25.(10分)如图,已知正比例函数y=ax与反比例函数y=的图象交于点A(3,2)(1)求上述两函数的表达式;(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.26.(10分)去年3月,某炒房团以不多于2224万元不少于2152万元的资金分别从A城、B城买入小户型二手房(80平方米/套)共4000平方米.其中A城、B城的购入价格分别为4000元/平方米、7000元/平方米.自住建部今年5月约谈成都市政府负责同志后,成都市进一步加大了调控政策.某炒房团为抛售A城的二手房,决定从6月起每平方米降价1000元.如果卖出相同平方米的房子,那么5月的销售额为640万元,6月的销售额为560万元.(1)A城今年6月每平方米的售价为多少元?(2)请问去年3月有几种购入方案?(3)若去年三月所购房产全部没有卖出,炒房团计划在7月执行销售方案:B城售价为1.05万元/平方米,并且每售出一套返还该购房者a元;A城按今年6月的价格进行销售。要使(2)中的所有方案利润相同,求出a应取何值?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.【点睛】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.2、A【解析】

由题干可得y=2x,代入x+yy【详解】∵xy∴y=2x,∴x+yy故选A.【点睛】本题考查了比例的基本性质:两内项之积等于两外项之积.即若ab=cd,则3、B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图4、D【解析】

根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【详解】解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.故选:D.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.5、D【解析】

根据分式有意义的条件:分母≠0,即可求出结论.【详解】解:若分式有意义,则x-1≠0,解得:x≠1.故选:D.【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件:分母≠0是解题关键.6、B【解析】

把各选项中的二次根式化为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】A、与不是同类二次根式,故A错误;B、与是同类二次根式,故B正确;C、与不是同类二次根式,故C错误;D、与不是同类二次根式,故D错误;故选:B.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.7、C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.8、B【解析】

关键描述语:每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-2,由此可得到所求的方程.【详解】解:根据题意可列方程:故选:B.【点睛】本题考查分式方程的问题,关键是根据所用B型包装箱的数量=所用A型包装箱的数量-2的等量关系解答.9、B【解析】

利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【详解】,,,,,设,则,,可得,解得:,则,故选B.【点睛】本题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.10、A【解析】

二次方程无实数根,Δ<0,据此列不等式,解不等式,在解集中取数即可.【详解】解:根据题意得:Δ=36+4a<0,得a<-9.故答案为:A【点睛】本题考查了一元二次方程的根,Δ>0,有两个实数根,Δ=0,有两个相等的实数根,Δ<0,无实数根,根据Δ的取值判断一元二次方程根的情况是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据题意可知,图象经过一三象限或一三四象限,可得b=1或b<1.【详解】解:一次函数y=2x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=1;经过一三四象限时,b<1.故b≤1.故答案是:≤.【点睛】此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.12、-1【解析】

分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.13、【解析】

根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,依次得到∠AOB=∠BOB1=∠B1OB2=…=45∘,∴B1(0,),B2(−1,1),B3(−,0),…,发现是8次一循环,所以2019÷8=252…3,∴点B2019的坐标为(−,0)【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.14、18.2【解析】

由于吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,故可先利用勾股定理求出AC的长,进而可得出结论.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;

Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:;故吸管的长度最少要:13+5.2=18.2(cm).故答案为:18.2.【点睛】本题考查勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.15、5cm【解析】先由平行四边形的性质可知,O是AC的中点,由已知E是BC的中点,可得出OE是△ABC的中位线,再通过△ABC的周长即可求出△OEC的周长.解:在平行四边形ABCD中,有∵点E是BC的中点∴∴∴△OEC的周长△ABC的周长=5cm故答案为:5cm16、【解析】

证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°AC=CD=2,∠ACD=90°△ACD为等腰直角三角形∴BC=AD==.故答案是:.【点睛】考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.17、(3,2)【解析】对称点的纵坐标与点P的纵坐标相等,为2,对称点与直线x=1的距离和P与直线x=1的距离相等,所以对称点的横坐标为3,所以对称点的坐标为(3,2).点睛:掌握轴对称图形的性质.18、18【解析】

利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24,求得CD=9,即可求得BC的长.【详解】∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∵E为AC中点,∴CE=AC==7.5,DE=AB==7.5,∵CD+DE+CE=24,∴CD=24-7.5-7.5=9,∴BC=18,故答案为18.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.三、解答题(共66分)19、6【解析】

过点A作AN∥BD交CD于N,交EF于M,判断△AEM∽△ACN,利用对应边成比例求出CN,继而得到树的高度.【详解】解:过点A作AN∥BD交CD于N,交EF于M,∵人、标杆、树都垂直于地面,∴∠ABF=∠EFD=∠CDF=90°,∴AB∥EF∥CD,∴∠EMA=∠CNA,∵∠EAM=∠CAN,∴△AEM∽△ACN,∴,∵AB=1.6m,EF=2m,BD=22m,FD=20m,∴,解得:CN=4.4m,则树的高度为4.4+1.6=6m.【点睛】本题考查了相似三角形的应用,解答本题的关键是作出辅助线,构造相似三角形,注意掌握相似三角形的性质:对应边成比例.20、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【解析】

(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;

(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【详解】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,

根据题意得:,

解得:.

答:A种商品每件的进价为20元,B种商品每件的进价为80元.

(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,

根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+1.

∵A种商品的数量不少于B种商品数量的4倍,

∴1000-m≥4m,

解得:m≤2.

∵在w=10m+1中,k=10>0,

∴w的值随m的增大而增大,

∴当m=2时,w取最大值,最大值为10×2+1=120,

∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【点睛】此题考查一次函数的应用,二元一次方程组的应用,解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.21、(1)20%;(2)2400元;【解析】

(1)设每次降价的百分率为x,根据题意可得等量关系:进价×2×(1﹣降价的百分率)2﹣进价=利润14元,根据等量关系列出方程,再解方程即可;(2)首先计算出销售总款,然后再减去成本可得利润.【详解】解:(1)设每次降价的百分率为x,由题意得:50×2(1﹣x)2﹣50=14,解得:x1=0.2=20%.x2=1.8(不合题意舍去),答:每次降价的百分率为20%;(2)10×50×2+40×50×2(1﹣20%)+(100﹣10﹣40)×50×2(1﹣20%)2﹣50×100=2400(元)答:在这次销售活动中商店获得2400元利润.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.22、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.23、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.【解析】

(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;

(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;

②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;【详解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.24、(1)﹣40x+600;(2)销售单价应定为10元.【解析】

(1)由表得出销售单价每增加1元时,其销售量减少40件,据此知其销售量为560-40(x+3-4)=-40x+600;

(2)根据“毛利润=总售价-总进价-固定成本”列出方程,解之求得x的值,再根据尽可能多的提升日销售量确定销售单价.【详解】解:(1)由表格可知,销售单价每增加1元时,其销售量减少40件,根据题意知,其销售量为560﹣40(x+3﹣4)=﹣40x+600;(2)根据题意,得:(﹣40x+600)x﹣400=1840,整理,得:x2﹣15x+56=0,解得:x1=7,x2=8,因为要尽可能多的提升日销售量,所以x=7,此时销售单价为10元,答:销售单价应定为10元.【点睛】本题考查的是一元二次方程运用,熟练掌握一元二次方程是解题的关键.25、(1)反比例函数的表达式为:y=,正比例函数的表达式为y=x;(2)BM=DM;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论