版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博周村区五校联考2024届八年级下册数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.《国家宝藏》节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是().A. B. C. D.2.如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF的周长和面积分别为()A.6,3 B.6,4 C.6, D.4,63.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A.332cm B.4cm C.32cm4.化简的结果是()A.2 B.-2 C. D.45.分别顺次连接①平行四边形②矩形③菱形④对角线相等的四边形,各边中点所构成的四边形中,为菱形的是()A.②④ B.①②③ C.② D.①④6.(1)中共有1个小正方体,其中一个看的见,0个看不见;(2)中共有8个小正方体,其中7个看得见,一个看不见;(3)中共有27个小正方体,其中19个看得见,8个看不见;…,则第(5)个图中,看得见的小正方体有()个.A.100 B.84 C.64 D.617.一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:尺码/厘米
23
23.5
24
24.5
25
25.5
26
销售量/双
5
10
22
39
56
43
25
一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()A.平均数 B.中位数 C.众数 D.方差8.已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为()A.(2,5) B.(8,20) C.(2,5),(8,20) D.以上都不是9.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为18cm,AC的长6cm,则AD的长为()A.13cm B.12cm C.5cm D.8cm10.下列根式中,与为同类二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.12.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.14.若A(x1,y1)和B(x2,y2)在反比例函数的图象上,且0<x1<x2,则y1与y2的大小关系是y1y2;15.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.16.若是一个正整数,则正整数m的最小值是___________.17.若最简二次根式与可以合并,则a=____.18.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为_____.三、解答题(共66分)19.(10分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果AC=4,求DE的长.20.(6分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是________;(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.21.(6分)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由.22.(8分)作图:如图,平面内有A,B,C,D四点按下列语句画图:(1)画射线AB,直线BC,线段AC(2)连接AD与BC相交于点E.23.(8分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:,)24.(8分)如图,分别延长平行四边形ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形25.(10分)(1)计算:()﹣()+2(2)已知:x=﹣1,求代数式x2+2x﹣2的值.26.(10分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据中心对称图形的定义和图案特点即可解答.【详解】、是中心对称图形,故本选项正确;、不是中心对称图象,故本选项错误;、不是中心对称图象,故本选项错误;、不是中心对称图象,故本选项错误.故选:.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图完全重合,那么这个图形就叫做中心对称图形.2、C【解析】分析:利用三角形中位线定理可知:△DEF∽△ABC,根据其相似比即可计算出△DEF的周长和面积.详解:∵点D、E、F分别是△ABC各边中点,∴△DEF∽△ABC,相似比为:.∴△DEF的周长=的周长=.∵△ABC三边的长分别为3、4、5,∴△ABC是直角三角形.∴△DEF的面积=的面积=.故选:C.点睛:本题主要考查了相似三角形.关键在于根据三角形的中位线定理得出两三角形相似,并得出相似比.3、A【解析】
先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根据直角三角形的性质即可求出BE的长.【详解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E为AB中点,∴AC=AE=12AB所以,∠B=30°.∵DE为AB中线且DE⊥AB,∴AD=BD=3cm,∴DE=12BD=3∴BE=32-3故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.4、A【解析】
直接利用二次根式的性质化简得出答案.【详解】解:,故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.5、A【解析】
根据菱形的判定,有一组邻边相等的平行四边形是菱形,只要保证四边形的对角线相等即可.【详解】∵连接任意四边形的四边中点都是平行四边形,∴对角线相等的四边形有:②④,故选:A.【点睛】本题主要利用菱形的四条边都相等及连接任意四边形的四边中点都是平行四边形来解决.6、D【解析】
根据前3个能看到的小正方体的数量找到规律,利用规律即可解题.【详解】(1)中共有1个小正方体,其中一个看的见,0个看不见,即;(2)中共有8个小正方体,其中7个看得见,一个看不见,即;(3)中共有27个小正方体,其中19个看得见,8个看不见,即;……第(5)个图中,看得见的小正方体有即个;故选:D.【点睛】本题主为图形规律类试题,找到规律是解题的关键.7、C【解析】
∵众数是在一组数据中,出现次数最多的数据,体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.故选C.8、C【解析】
根据二次根式的性质分析即可得出答案.【详解】解:∵+是整数,m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.9、C【解析】
由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形,根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=18-AB,然后根据勾股定理即可求得.【详解】∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为18cm,AC的长6cm,∴BC=18﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,解得:AB=10cm,∴AD=5cm,故选C.【点睛】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.10、A【解析】先把二次根式与化为最简二次根式,再进行判断,∵=,四个选项中只有A与被开方数相同,是同类二次根式,故选A二、填空题(每小题3分,共24分)11、或【解析】
分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.【详解】分两种情况:①如图1所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CE,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CE,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE-CF=4-3=1;②如图2所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CF,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CF,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE+CF=4+3=1;综上所述:线段EF的长为:1或1.故答案为:1或1.【点睛】本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.12、21.2【解析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,DMDN=即:0.630=0.4∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.13、1.【解析】
根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.【详解】∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF=DO==1,故答案为:1.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识.矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.14、>;【解析】试题解析:∵反比例函数中,系数∴反比例函数在每个象限内,随的增大而减小,∴当时,故答案为15、2.1【解析】试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.解:过点D作DE⊥AB于E,∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.1cm.∴DE=DC=2.1cm.故填2.1.点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.16、5【解析】
由于是一个正整数,所以根据题意,也是一个正整数,故可得出m的值.【详解】解:∵是一个正整数,∴根据题意,是一个最小的完全平方数,∴m=5,故答案为5.【点睛】本题主要考查了二次根式的定义,正确对二次根式进行化简并找到被开方数是解答本题的关键.17、1【解析】
由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.18、1【解析】∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=1.点睛:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.三、解答题(共66分)19、(1);(2).【解析】试题分析:(1)要想求出∠ABC的度数,须知道∠DAB的度数,由菱形性质和线段垂直平分线的性质可证出△ABD是等边三角形,∴∠DAB=60°,于是;(2)先证△ABO≌△DBE,从而知道DE=AO,AO=AC的一半,于是DE的长就知道了.试题解析:(1)∵四边形ABCD是菱形,,∥,∴.∵为的中点,,∴.∴.∴△为等边三角形.∴.∴.(2)∵四边形是菱形,∴于,∵于,∴.∵∴.∴.考点:1.菱形性质;2.线段垂直平分线性质;3.等边三角形的判定与性质.20、(1)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)证明见解析.【解析】
(1)直接得出它的逆命题;(2)先判断出∠A=∠ACD,∠B=∠DCB,最后用三角形的内角和定理,即可求出∠A+∠B=90°,即可得出结论.【详解】解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.【点睛】主要考查了直角三角形的性质,等腰三角形的性质,根据命题得出逆命题是解本题的关键.21、(1)见解析;(2)EF=GH,理由见解析【解析】
(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;【详解】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.在△ABE和△DAH中∠BAE=∠HDAAB=AD∠B=∠HAD∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF=GH.理由:如图所示:将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH.【点睛】此题考查四边形综合题,解题关键在于证明△ABE≌△DAH,再根据平移的性质求得AM=EF,DN=GH.22、答案见解析【解析】
利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.23、船向岸边移动了大约3.3m.【解析】
由题意可求出CD长,在中分别用勾股定理求出AD,AB长,作差即可.【详解】解:∵在中,,,,∴.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《水彩画》2021-2022学年第一学期期末试卷
- 淮阴师范学院《社会调查理论与方法》2021-2022学年第一学期期末试卷
- 淮阴师范学院《培训与人力资源开发》2023-2024学年第一学期期末试卷
- 淮阴师范学院《形势与政策(5)》2022-2023学年第一学期期末试卷
- 淮阴工学院《塑料模具设计1》2021-2022学年第一学期期末试卷
- 淮阴师范学院《传感器原理及其应用》2023-2024学年第一学期期末试卷
- 淮阴工学院《装饰色彩》2021-2022学年第一学期期末试卷
- DB4414T+36-2024苦瓜嫁接育苗技术规程
- DB2310-T 147-2024寒葱培育技术规程
- 低温仓储与海鲜冷链物流考核试卷
- (完整word版)新译林版七年级(上册)英语全册知识点归纳总结
- 火车站站房精装修施工方案(90页)
- 电话的发展史PPT演示课件(PPT 27页)
- 视频监控系统原理与维修PPT课件
- 交叉口的vissim仿真与优化毕业论文
- 危险源辨识一览表
- 广告宣传类印刷服务项目方案纯方案,124
- 医用高值耗材目录
- 高中英语语法 主谓一致(27张)ppt课件
- 采购管理实务习题答案项目二采购需求分析与计划制定
- MSA-GRR数据自动生成工具
评论
0/150
提交评论