山东省高青县2024年八年级数学第二学期期末考试模拟试题含解析_第1页
山东省高青县2024年八年级数学第二学期期末考试模拟试题含解析_第2页
山东省高青县2024年八年级数学第二学期期末考试模拟试题含解析_第3页
山东省高青县2024年八年级数学第二学期期末考试模拟试题含解析_第4页
山东省高青县2024年八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省高青县2024年八年级数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列函数中,一次函数是().A. B. C. D.2.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:得分(分60708090100人数(人8121073则得分的中位数和众数分别为A.75,70 B.75,80 C.80,70 D.80,803.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23 B.24 C.25 D.无答案4.下列性质中,菱形具有而矩形不一定具有的是().A.对角线相等; B.对角线互相平分;C.对角线互相垂直; D.对角相等5.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为()A.40° B.50° C.60° D.70°6.如图,矩形ABCD的两条对角线相交于点O,CE垂直平分DO,,则BE等于A. B. C. D.27.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.508.如图,中,、分别是、的中点,平分,交于点,若,则的长是A.3 B.2 C. D.49.剪纸艺术是中国传统的民间工艺.下列剪纸的图案中,属于中心对称图形的是()A. B. C. D.10.如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.已知方程无解,则m的值为()A.0 B.3 C.6 D.212.化简二次根式的结果为()A.﹣2a B.2a C.2a D.﹣2a二、填空题(每题4分,共24分)13.如图,在矩形中,的平分线交于点,连接,若,,则_____.14.当x___________时,是二次根式.15.使有意义的的取值范围是______.16.若xy=3,则17.如图,为正三角形,是的角平分线,也是正三角形,下列结论:①:②:③,其中正确的有________(填序号).18.如图,正方形ABCD的边长为,点E、F分别为边AD、CD上一点,将正方形分别沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N给好落在BE上,则图中阴影部分的面积为__________;三、解答题(共78分)19.(8分)已知,一次函数y=(1-3k)x+2k-1,试回答:(1)k为何值时,y随x的增大而减小?(2)k为何值时,图像与y轴交点在x轴上方?(3)若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.20.(8分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.(1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.(2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.(3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.21.(8分)己知:,,求下列代数式的值:(1);(2).22.(10分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.(3)结合图像写出不等式的解集;23.(10分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.24.(10分)计划建一个长方形养鸡场,为了节省材料,利用一道足够长的墙做为养鸡场的一边,另三边用铁丝网围成,如果铁丝网的长为35m.(1)计划建养鸡场面积为150m2,则养鸡场的长和宽各为多少?(2)能否建成的养鸡场面积为160m2?如果能,请算出养鸡场的长和宽;如果不能,请说明理由.25.(12分)两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.(2)若两车行驶5相遇,求乙车的速度.26.已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.(1)如图1,若k=1,求线段AB的长;(2)如图2,点C与点A关于y轴对称,作射线BC;①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;②y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据一次函数的定义分别进行判断即可.【详解】解:.是一次函数,故正确;.当时,、是常数)是常函数,不是一次函数,故错误;.自变量的次数为,不是一次函数,故错误;.属于二次函数,故错误.故选:.【点睛】本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.2、A【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是(分),得70分的人数最多,有12人,故众数为70(分),故选.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、B【解析】

根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.【详解】(m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.4、C【解析】

根据矩形和菱形的性质即可得出答案【详解】解:A.对角线相等是矩形具有的性质,菱形不一定具有;

B.对角线互相平分是菱形和矩形共有的性质;

C.对角线互相垂直是菱形具有的性质,矩形不一定具有;

D.邻边互相垂直是矩形具有的性质,菱形不一定具有.

故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键5、A【解析】

首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.【详解】∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,∴四边形ABCD是矩形,∵∠OAD=50°,∴∠OAB=40°.故选:A.【点睛】本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.6、A【解析】

根据矩形的性质可证明,都是等边三角形,根据等边三角形的性质即可求出OE的长,即可的答案;【详解】四边形ABCD是矩形,,垂直平分相等OD,,,,都是等边三角形,,OD=,,故选A.【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.8、A【解析】

利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【详解】在中,、分别是、的中点,,,平分,...在中,,,.故选.【点睛】本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9、D【解析】

旋转180后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【详解】A、不是中心对称图形,不合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、是中心对称图形,符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.11、B【解析】

分式方程去分母转化为整式方程,根据分式方程无解得到x=1,代入整式方程即可求出m的值.【详解】去分母得:x-2x+6=m,将x=1代入得:-1+6=m,则m=1.故选B.【点睛】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.12、A【解析】

利用根式化简即可解答.【详解】解:∵﹣8a3≥0,∴a≤0∴=2|a|=﹣2a故选A.【点睛】本题考查二次根式性质与化简,熟悉掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、【解析】【分析】由矩形的性质可知∠D=90°,AD=BC=8,DC=AB,AD//BC,继而根据已知可得AB=AE=5,再利用勾股定理即可求得CE的长.【详解】∵四边形ABCD是矩形,∴∠D=90°,AD=BC=8,DC=AB,AD//BC,∴∠AEB=∠EBC,又∵∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=5,∴DC=5,DE=AD-AE=3,∴CE=,故答案为.【点睛】本题考查了矩形的性质,勾股定理的应用,求出AB的长是解题的关键.14、≤;【解析】

因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.【详解】因为是二次根式,所以,所以,故答案为.【点睛】本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.15、【解析】

根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.【详解】解:依题意得:且x-1≠0,解得.故答案为:.【点睛】本题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.16、1【解析】

根据比例的性质即可求解.【详解】∵xy=3,∴x=3y,∴原式=3y+yy故答案为:1.【点睛】本题考查了比例的性质,关键是得出x=3y.17、①②③【解析】

由等边三角形的性质可得AE=AD,∠CAD=∠BAD=30°,AD⊥BC,可得∠BAE=∠BAD=30°,且AE=AD,可得EF=DF,“SAS”可证△ABE≌△ABD,可得BE=BD,即可求解.【详解】解:∵△ABC和△ADE是等边三角形,AD为∠BAC的角平分线,

∴AE=AD,∠CAD=∠BAD=30°,AD⊥BC,

∴∠BAE=∠BAD=30°,且AE=AD,

∴EF=DF

∵AE=AD,∠BAE=∠BAD,AB=AB

∴△ABE≌△ABD(SAS),

∴BE=BD

∴正确的有①②③

故答案为:①②③【点睛】本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.18、【解析】分析:设NE=x,由对称的性质和勾股定理,用x分别表示出ON,OE,OM,在直角△OEN中用勾股定理列方程求x,则可求出△OBE的面积.详解:连接BO.∠ABE=∠EBF=∠FBC=30°,AE=1=EM,BE=2AE=2.∠BNF=90°,∠NEO=60°,∠EON=30°,设EN=x,则EO=2x,ON=x=OM,∴OE+OM=2x+x=(2+)x=1.∴x==2-.∴ON=x=(2-)=2-3.∴S=2S△BOE=2×(×BE×ON)=2×[×2×(2-3)]=4-6.故答案为.点睛:翻折的本质是轴对称,所以注意对称点,找到相等的线段和角,结合勾股定理列方程求出相关的线段后求解.三、解答题(共78分)19、(1);(2);(3)【解析】

(1)根据一次函数的性质可得出1﹣3k<0,解之即可得出结论;(2)根据一次函数图象与系数的关系结合一次函数的定义可得出关于k的一元一次不等式组,解之即可得出结论;(3)把点(3,4)代入一次函数,解方程即可.【详解】(1)∵一次函数y=(1-3k)x+2k-1中y随x的增大而减小,∴1-3k<0,

解得:,

∴当时,y随x的增大而减小.(2)∵一次函数y=(1-3k)x+2k-1的图象与y轴交点在x轴上方,

∴,

解得:k>,

∴当k>时,一次函数图象与y轴交点在x轴上方.(3)∵一次函数y=(1-3k)x+2k-1经过点(3,4),∴4=3×(1-3k)+2k-1,∴k=-,一次函数的表达式为:.【点睛】本题考查了一次函数的性质、一次函数的定义以及一次函数图象与系数的关系,解题的关键是:(1)根据一次函数的性质找出1﹣3k<0;(2)根据一次函数图象与系数的关系结合一次函数的定义找出关于k的一元一次不等式组.20、(1)满足条件的AP的值为2.8或4或2;(2)PA﹣PB=PC.理由见解析;(3)PA﹣PB=PC.理由见解析.【解析】

(1)如图①中,作CH⊥AD于H.利用面积法求出CH,利用勾股定理求出DH,再求出PD,接下来分三种情形解决问题即可;(2)结论:PA﹣PB=PC.如图②中,作EC⊥PC交AP于E.只要证明△ACE≌△BCP即可解决问题;(3)结论:PA﹣PB=PC.如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.只要证明△ACE≌△BCP即可解决问题;【详解】(1)如图①中,作CH⊥AD于H.在Rt△ACD中,AD==10,∵×AC×DC=×AD×CH,∴CH=,∴DH==,①当CP=CD,∵CH⊥PD,∴PH=DH=,∴PD=,∴PA=AD﹣PD=10﹣=.②当CD=DP时,DP=1.AP=10﹣1=4,③当CP=PD时,易证AP=PD=2,综上所述,满足条件的AP的值为2.8或4或2.(2)结论:PA﹣PB=PC.理由:如图②中,作EC⊥PC交AP于E.∵∠PCE=90°,∠CPE=42°,∴∠CEP=∠CPE=42°,∴CE=CP,PE=PC,∵∠ACB=∠ECP=90°,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE=PC,∴PA﹣PB=PC.(3)结论:PA﹣PB=PC.理由:如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.∵∠CEP=180°﹣120°﹣30°=30°,∴∠CEP=∠CPE,∴CE=CP.作CH⊥PE于H,则PE=PC,∵∠ACB=∠ECP,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE=PC.【点睛】本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、(1);(2)【解析】

(1)首先将代数式进行通分,然后根据已知式子,即可得解;(2)首先根据完全平方差公式,将代数式展开,然后将已知式子转换形式,代入即可得解.【详解】∵,,∴,(1)(2)【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.22、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13【解析】

(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;

(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.(3)根据函数图象比较函数值的大小.【详解】解:(1)把点A(3,6)代入y=,得m=13,则y=.得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).由直线y=kx+b过点A(3,6),点B(13,1),则所求一次函数的表达式为y=﹣x+1.(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).(3)根据函数图象可得的解集:或;【点睛】考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.23、57+12﹣【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)=(12+12+45)﹣(6﹣2+2﹣5)=(57+12﹣)(cm2).考点:二次根式的应用24、(1)养鸡场的长和宽各为15m、10m或20m、7.5m;(2)不能,理由见解析.【解析】

(1)设养鸡场垂直于墙的一边长为x米,则另一边长为(35-2x)米,根据矩形面积公式即可列出方程,解方程即得结果;(2)若能建成,仿(1)题的方法列出方程,再根据一元二次方程的根的判别式检验即可得出结论.【详解】解:(1)设养鸡场垂直于墙的一边长为x米,根据题意,得:=150,解得:,,当时,==15;当时,==20;答:养鸡场的长和宽各为15m、10m或20m、7.5m.(2)不能.理由如下:若能建成,设养鸡场垂直于墙的一边长为y米,则有=160,即,∵,∴此方程无解,所以无法建成面积为160m2的养鸡场.【点睛】本题是一元二次方程的应用问题,主要考查了矩形的面积、一元二次方程的解法和根的判别式等知识,属于常考题型,正确理解题意、找准相等关系列出方程是解题的关键.25、(1);(2)40千米/小时.【解析】

(1)甲车行驶过程中y与x之间的函数解析式两种,即从A地到B地是正比例函数,返回时是一次函数,自变量的取值范围分别为(0<x≤4)和(4<x≤7),

(2)求出乙车的y与x的关系式,再与甲车返回时的关系式组成方程组解出即可.【详解】解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:

300=4k,解得:k=75,

∴y=75x

(0<x≤4)

设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:

,解得:k=-100,b=700,

∴y=-100x+700

(4<x≤7),

答:甲车行驶过程中y与x之间的函数解析式为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论