2024年湖北省随州市广水市广才中学数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
2024年湖北省随州市广水市广才中学数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
2024年湖北省随州市广水市广才中学数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
2024年湖北省随州市广水市广才中学数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
2024年湖北省随州市广水市广才中学数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖北省随州市广水市广才中学数学八年级下册期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.菱形的对角线不一定具有的性质是()A.互相平分 B.互相垂直 C.每一条对角线平分一组对角 D.相等2.下列各组线段中,能够组成直角三角形的一组是(

)A.1,2,3 B.2,3,4 C.4,5,6 D.1,,3.下列多项式中,不能因式分解的是()A. B. C. D.4.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则的值为()A. B. C. D.5.下列计算错误的是()A.+= B.×= C.÷=3 D.(2)2=86.如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为().A. B. C.16 D.7.如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是()A.当销售量为4台时,该公司赢利4万元 B.当销售量多于4台时,该公司才开始赢利C.当销售量为2台时,该公司亏本1万元 D.当销售量为6台时,该公司赢利1万元8.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)9.如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.30° B.45° C.60° D.90°10.将分式方程化为整式方程,方程两边可以同时乘()A.x﹣2 B.x C.2(x﹣2) D.x(x﹣2)11.如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是()A.甲、乙两地之间的距离为200km B.快车从甲地驶到丙地共用了2.5hC.快车速度是慢车速度的1.5倍 D.快车到达丙地时,慢车距丙地还有50km12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于不等式x+1≥mx+n的解集是()A.x≥m B.x≥2 C.x≥1 D.x≥﹣1二、填空题(每题4分,共24分)13.分解因式:9a﹣a3=_____.14.直线y=2x﹣4与x轴的交点坐标是_____.15.)如图,Rt△ABC中,C=90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.16.已知一组数据:0,2,x,4,5,这组数据的众数是4,那么这组数据的平均数是_____.17.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.18.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为______.三、解答题(共78分)19.(8分)如图所示,△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请写出三角形ABC平移的过程;(2)分别写出点A′,B′,C′的坐标.(3)求△A′B′C′的面积.20.(8分)在平面直角坐标系中,BC∥OA,BC=3,OA=6,AB=3.(1)直接写出点B的坐标;(2)已知D、E(2,4)分别为线段OC、OB上的点,OD=5,直线DE交x轴于点F,求直线DE的解析式;(3)在(2)的条件下,点M是直线DE上的一点,在x轴上方是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(8分)如图,在平面内,菱形ABCD的对角线相交于点O,点O又是菱形B1A1OC1的一个顶点,菱形ABCD≌菱形B1A1OC1,AB=BD=1.菱形B1A1OC1绕点O转动,求两个菱形重叠部分面积的取值范围,请说明理由.22.(10分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点(1)直接写出点C的坐标;(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.23.(10分)如图,在矩形中,对角线与相交于点,点,分别是,的中点,连结,.(1)求证:;(2)连结,若,,求矩形的周长.24.(10分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?25.(12分)如图,一次函数y=x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO.(1)求点A、B的坐标及线段BC的长度;(2)当点P在什么位置时,△APQ≌△CBP,说明理由;(3)当△PQB为等腰三角形时,求点P的坐标.26.已知=,求代数式的值.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据菱形的对角线性质,即可得出答案.【详解】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,

∴菱形的对角线不一定具有的性质是相等;

故选:D.【点睛】此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.2、D【解析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.3、C【解析】

直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、ab-a=a(b-1),能够分解因式,故此选项不合题意;

B、a2-9=(a+3)(a-3),能够分解因式,故此选项不合题意;

C、a2+2a+5,不能因式分解,故本选项符合题意;

D、4a2+4a+1=(2a+1)2,能够分解因式,故此选项不合题意;

故选:C.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.4、A【解析】

直接根据平行线分线段成比例定理求解.【详解】解:∵a∥b∥c,

∴.

故选:A.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.5、A【解析】

根据二次根式的运算法则逐一进行计算即可.【详解】,二次根式不能相加,故A计算错误,符合题意,,B计算正确,不符合题意,,C计算正确,不符合题意,,D计算正确,不符合题意,故选A.【点睛】本题考查二次根式的运算,熟知二次根式的运算法则是解题关键.6、B【解析】

由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.【详解】∵菱形ABCD中,∠D=135°,

∴∠BCD=45°,

∵BE⊥CD于E,FG⊥BC于G,

∴△BFG与△BEC是等腰直角三角形,

∵∠GCF=∠ECF,∠CGF=∠CEF=90°,

CF=CF,

∴△CGF≌△CEF(AAS),

∴FG=FE,CG=CE,

设BG=FG=EF=x,

∴BF=x,

∵△BFG的周长为4,

∴x+x+x=4,

∴x=4-2,

∴BE=2,

∴BC=BE=4,

∴菱形ABCD的面积=4×2=8,

故选:B.【点睛】考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.7、A【解析】

利用图象交点得出公司盈利以及公司亏损情况.【详解】解:A、当销售量为4台时,该公司赢利0万元,错误;B、当销售量多于4台时,该公司才开始赢利,正确;C、当销售量为2台时,该公司亏本1万元,正确;D、当销售量为6台时,该公司赢利1万元,正确;故选A.【点睛】此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.8、D【解析】

求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.9、A【解析】

根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.【详解】解:∵四边形ABCD是正方形,

∴AB=AD,∠B=∠D=90°,

∵线段AE绕点A逆时针旋转后与线段AF重合,

∴AE=AF,

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴∠DAF=∠BAE,

∵∠BAE=30°,

∴∠DAF=30°,

∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,

∴旋转角为30°.

故选:A.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.10、D【解析】

找出两个分式的公分母即可【详解】分式方程化为整式方程,方程两边可以同时乘x(x﹣2),故选D【点睛】本题考查公分母有关知识点,基础知识牢固是解题关键11、C【解析】

根据两车同时出发,同向而行,所以点A即为甲、乙两地的距离;图中点B为y=0,即快慢两车的距离为0,所以B表示快慢两车相遇的时间;由图像可知慢车走300km,用了3小时,可求出慢车的速度,进而求出快车的速度;点C的横坐标表示快车走到丙地用的时间,根据快车与慢车的速度,可求出点C的坐标【详解】A、由图像分析得,点A即为甲、乙两地的距离,即甲、乙两地之间的距离为选项A是正确BC、由图像可知慢车走300km,用了3小时,则慢车的速度为100km/h,因为1h快车比慢车多走100km,故快车速度为200km/h,所以快车从甲地到丙地的时间=500200=2.5h,故选项B是正确的,快车速度是慢车速度的两倍,故选项C是错误的D、快车从甲地驶到丙地共用了2.5h,即点C的横坐标2.5,则慢车还剩0.5h才能到丙地,距离=0.5100=50km,故快车到达丙地时,慢车距丙地还有50km,选项D是正确的故正确答案为C【点睛】此题主要根据实际问题考查了一次函数的应用,解决此题的关键是根据函数图像,读懂题意,联系实际的变化,明确横轴和纵轴表示的意义12、C【解析】

首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的下方,据此求解.【详解】依题意,得:,解得:a=1,由图象知:于不等式x+1≥mx+n的解集是x≥1【点睛】此题考查一次函数与一元一次不等式,解题关键在于求得a的值二、填空题(每题4分,共24分)13、a(3+a)(3﹣a).【解析】

先提公因式,再用平方差公式,可得答案.【详解】原式=a(9﹣a2)=a(3+a)(3﹣a).故答案为:a(3+a)(3﹣a).【点睛】本题考查了因式分解,利用提公因式与平方差公式是解题的关键.14、(2,0)【解析】

与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.【详解】解:令,则,解得.所以,直线与x轴的交点坐标是.故填:.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.15、4.【解析】正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.∴∠AOM+∠BOF=90°.又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.在△AOM和△BOF中,∵∠AMO=∠OFB=90°,∠OAM=∠BOF,OA=OB,∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.∴OF=CF.∴△OCF为等腰直角三角形.∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.16、3【解析】

先根据众数的定义求出的值,再根据平均数的计算公式列式计算即可.【详解】解:,2,,4,5的众数是4,,这组数据的平均数是;故答案为:3;【点睛】此题考查了众数和平均数,根据众数的定义求出的值是本题的关键,众数是一组数据中出现次数最多的数.17、1.【解析】

连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.【详解】如图所示:连接BD.∵E,F分别是AB,AD的中点,EF=5,∴BD=2EF=1.∵ABCD为矩形,∴AC=BD=1.故答案为:1.【点睛】本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.18、x≥﹣1【解析】

由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b≥kx解集.【详解】两个条直线的交点坐标为(−1,2),且当x≥−1时,直线y=kx在y=ax+b直线的下方,故不等式ax+b≥kx的解集为x≥−1.故答案为x≥−1.【点睛】本题考查了一次函数与一元一次不等式的知识点,解题的关键是根据图象可知一次函数与一元一次不等式的增减性.三、解答题(共78分)19、(1)见解析;(2)A′(2,3)B′(1,0)C′(5,1);(3)5.5【解析】

(1)由x1+6-x1=6,y1+4-y1=4得平移规律;(2)根据(1)中的平移规律即可得到点A′,B′,C′的坐标;(3)把△A′B′C′补形为一个长方形后,利用面积的和差关系求△A′B′C′的面积.【详解】(1)△ABC先向右平移6个单位,再向上平移4个单位得到△A′B′C′或△ABC先向上平移4个单位,再向右平移6个单位得到△A′B′C′(2)A′(2,3)B′(1,0)C′(5,1);(3)S△A′B′C′=4×3−×3×1−×3×2−×1×4=12−1.5−3−2=5.5.20、(1)B(3,6);(2)y=﹣x+5;(3)点N坐标为(4,8)或(﹣5,2.5)或(﹣2,)..【解析】

(1)过B作BG⊥OA于点G,在Rt△ABG中,利用勾股定理可求得BG的长,则可求得B点坐标;

(2)由条件可求得D点坐标,利用待定系数法可求得直线DE的解析式;

(3)当OD为边时,则MO=OD=5或MD=OD=5,可求得M点坐标,由MN∥OD,且MN=OD可求得N点坐标;当OD为对角线时,则MN垂直平分OD,则可求得M、N的纵坐标,则可求得M的坐标,利用对称性可求得N点坐标.【详解】解:(1)如图1,过B作BG⊥OA于点G,∵BC=3,OA=6,∴AG=OA﹣OG=OA﹣BC=6﹣3=3,在Rt△ABG中,由勾股定理可得AB2=AG2+BG2,即(3)2=32+BG2,解得BG=6,∴OC=6,∴B(3,6);(2)由OD=5可知D(0,5),设直线DE的解析式是y=kx+b把D(0,5)E(2,4)代入得,解得:,∴直线DE的解析式是y=﹣x+5;(3)当OD为菱形的边时,则MN=OD=5,且MN∥OD,∵M在直线DE上,∴设M(t,﹣t+5),①当点N在点M上方时,如图2,则有OM=MN,∵OM2=t2+(﹣t+5)2,∴t2+(﹣t+5)2=52,解得t=0或t=4,当t=0时,M与D重合,舍去,∴M(4,3),∴N(4,8);②当点N在点M下方时,如图3,则有MD=OD=5,∴t2+(﹣t+5﹣5)2=52,解得t=2或t=﹣2,当t=2时,N点在x轴下方,不符合题意,舍去,∴M(﹣2,+5),∴N(﹣2,);当OD为对角线时,则MN垂直平分OD,∴点M在直线y=2.5上,在y=﹣x+5中,令y=2.5可得x=5,∴M(5,2.5),∵M、N关于y轴对称,∴N(﹣5,2.5),综上可知存在满足条件的点N,其坐标为(4,8)或(﹣5,2.5)或(﹣2,).【点睛】一次函数的综合应用,涉及勾股定理、待定系数法、菱形的性质、分类讨论及方程思想.在(2)中求得E点坐标是解题的关键,在(3)中求得M点的坐标是解题的关键,注意分类讨论.21、≤s.【解析】

分别求出重叠部分面积的最大值,最小值即可解决问题【详解】如图1中,∵四边形ABCD是菱形,∴AB=AD,∵AB=BD,∴AB=BD=AD=1,∴△ABD是等边三角形,当AE=EB,AF=FD时,重叠部分的面积最大,最大面积=S△ABD=××12=,如图2中,当OA1与BC交于点E,OC1交AB与F时,作OG⊥AB与G,OH⊥BC于H.易证△OGF≌△OHE,∴S四边形BEOF=S四边形OGBH=×=,观察图象图象可知,在旋转过程中,重叠部分是三角形时,当点E与B重合,此时三角形的面积最小为,综上所述,重叠部分的面积S的范围为≤s≤.【点睛】本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布22、(1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).【解析】

(1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;

(2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;

(3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.【详解】(1)∵OA=OB=8,点A在x轴正半轴,点B在y轴正半轴,∴点A的坐标为(8,0),点B的坐标为(0,8).又∵点C为线段AB的中点,∴点C的坐标为(4,4).(2)∵OD=1,点D在x轴的正半轴,∴点D的坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(4,4),D(1,0)代入y=kx+b,得:,解得:,∴直线CD的解析式是y=.(3)存在点F,使以A、C、D、F为点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:①当AC为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F1的坐标为(11,4);②当AD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F2的坐标为(5,-4);③当CD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F3的坐标为(-3,4).综上所述,点F的坐标是(11,4),(5,-4)或(-3,4).【点睛】本题考查了中点坐标公式、待定系数法求一次函数解析式、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)由点A,B的坐标,利用中点坐标公式求出点C的坐标;(2)根据点的坐标,利用待定系数法求出直线CD的解析式;(3)分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分找关于m,n的二元一次方程组.23、(1)见解析;(2).【解析】

(1)欲证明BE=CF,只要证明△BOE≌△COF即可;(2)利用三角形中位线定理求出AD,解直角三角形求出AB即可解决问题;【详解】解:(1)∵四边形为矩形,∴,.∵,分别为,的中点,∴.∵,∴,∴.(2)∵,分别为,的中点,∴为的中位线.∵,∴.∵,∴,∴.∴.【点睛】本题考查矩形的性质,三角形全等的判定和性质以及三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论