




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市2024年八年级数学第二学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知实数m、n,若m<n,则下列结论成立的是()A.m﹣3<n﹣3 B.2+m>2+n C. D.﹣3m<﹣3n2.矩形,菱形,正方形都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角3.已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<b<a D.c<a<b4.如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为()A. B.C. D.5.“弘扬柳乡工匠精神,共筑乡村振兴之梦”第三届柳编文化节暨首届“襄阳人游襄州”启动仪式在浩然广场举行。为了迎接此次盛会,某工艺品厂柳编车间组织名工人赶制一批柳编工艺品,为了解每名工人的日均生产能力,随机调查了某天每个工人的生产件数,获得数据如下表:则这一天名工人生产件数的众数和中位数分别是()A.件、件 B.件、件 C.件、件 D.件、件6.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁7.高跟鞋的奥秘:当人肚脐以下部分的长与身高,的比值越接近0.618时,越给人以一种匀称的美感,如图,某女士身高,脱去鞋后量得下半身长为,则建议她穿的高跟鞋高度大约为()A. B. C. D.8.化简的结果是()A.a-b B.a+b C. D.9.如图所示,E、F分别是□ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=2cm2,S△BQC=4cm2,则阴影部分的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm210.若方程有增根,则m的值为()A.2 B.4 C.3 D.-311.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB//DCC.BO=DO D.∠ABC=∠CDA12.如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为().A.17 B.16 C.15 D.14二、填空题(每题4分,共24分)13.若三角形的一边长为,面积为,则这条边上的高为______.14.菱形的边长为5,一条对角线长为8,则菱形的面积为____.15.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲55149191135乙55151110135某同学根据上表分析得出如下结论:(l)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀(每分钟输入汉字超过150个为优秀)的人数多于甲班优秀的人数;(3)甲班的成绩波动比乙班的成绩波动小、上述结论中正确的是______.(填序号)16.一次函数y=-2x+4的图象与x轴交点坐标是______,与y轴交点坐标是_________17.如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.18.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.三、解答题(共78分)19.(8分)我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是______.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形”ABCD中,点E、F、G、H(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果错误,请给出反例.20.(8分)如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′,B′,C′;(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为.21.(8分)如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE=DF,求证;四边形ABCD是菱形.22.(10分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.23.(10分)(1)已知y﹣2与x成正比例,且x=2时,y=﹣1.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交于点M(1,p)①关于x,y的二元一次方程组的解为;②求直线l1的表达式.24.(10分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形?25.(12分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?26.(1)先化简,再求值:,其中;(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据不等式的性质逐项分析即可.【详解】A.∵m<n,∴m﹣3<n﹣3,正确;B.∵m<n,∴2+m<2+n,故错误;C.∵m<n,∴,故错误;D.∵m<n,∴﹣3m>﹣3n,故错误;故选A.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2、C【解析】
利用矩形、菱形和正方形的性质对各选项进行判断.【详解】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:C.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.3、D【解析】
先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.【详解】∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,∴,∴b<a<c.故选B.【点睛】考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4、D【解析】
由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,
∴OA=OC,AD=BC,AB=CD=5,
∵AE=EB,OE=3,
∴BC=2OE=6,
∴▱ABCD的周长=2×(AB+BC)=1.
故选:D.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.5、C【解析】
中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据.【详解】数据3出现的次数最多,所以众数为3件;因为共16人,所以中位数是第8和第9人的平均数,即中位数==4件,故选:C.【点睛】本题考查众数和中位数,解题关键在于熟练掌握计算法则.6、D【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从乙和丁中选择一人参加比赛,∵,∴选择丁参赛,故选D.【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.7、C【解析】
先设出穿的高跟鞋的高度,再根据黄金分割的定义列出算式,求出x的值即可.【详解】解:设需要穿的高跟鞋是x(cm),根据黄金分割的定义得:,解得:,∴建议她穿的高跟鞋高度大约为8cm;故选:C.【点睛】本题主要考查了黄金分割的应用.掌握黄金分割的定义是解题的关键,是一道基础题.8、B【解析】
直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】.故选B.【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.9、A【解析】
连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.【详解】连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=1cm1,S△BQC=4cm1,∴S四边形EPFQ=6cm1,故阴影部分的面积为6cm1.故选A.【点睛】本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.10、D【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘(x−1),得x=2(x−1)-m,∵原方程有增根,∴最简公分母(x−1)=0,解得x=1,当x=1时,1=2(1−1)-mm=-1.故选:D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11、A【解析】
根据平行四边形的性质即可判断.平行四边形的对边平行且相等,对角相等,对角线互相平分。【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,OB=OD,∠ABC=∠ADC,
∴B、C、D正确,A错误。
故选:A.【点睛】本题考查平行四边形的性质、记住平行四边形的性质是解题的关键,属于中考基础题.12、B【解析】
根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.【详解】由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,∴AF=AB,EF=EB,∵AD∥BC,∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴BA=BE,∴BA=BE=AF=FE,∴四边形ABEF是菱形,∴AE⊥BF∵BF=12,AB=10,∴BO=BF=6∴AO=∴AE=2AO=16故选B.【点睛】本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.二、填空题(每题4分,共24分)13、4【解析】
利用面积公式列出关系式,将已知面积与边长代入即可求出高.【详解】解:根据题意得:÷×2=4.【点睛】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.14、1【解析】
菱形的对角线互相垂直平分,四边相等,可求出另一条对角线的长,再根据菱形的面积等于对角线乘积的一半求解即可.【详解】∵菱形的边长为5,一条对角线长为8∴另一条对角线的长∴菱形的面积故答案为:1.【点睛】本题考查了菱形的面积问题,掌握菱形的性质、菱形的面积公式是解题的关键.15、(1),(2).【解析】
平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】解:从表中可知,平均字数都是135,(1)正确;
甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;
甲班的方差大于乙班的,则说明乙班的波动小,所以(3)错误.
(1)(2)正确.
故答案为:(1)(2).【点睛】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16、(2,0)(0,4)【解析】把y=0代入y=2x+4得:0=2x+4,x=−2,令x=0,代入y=2x+4解得y=4,∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),即一次函数y=2x+4与x轴的交点坐标是(−2,0),与y轴交点坐标这(0,4).17、15【解析】
根据题意,先将正方体展开,再根据两点之间线段最短求解.【详解】将上面翻折起来,将右侧面展开,如图,连接,依题意得:,,∴.故答案:15【点睛】此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.18、【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等边三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四边形AECF是平行四边形,∵CE=BC-BE=3-2=1,∴S四边形AECF=CE•AM=,故答案为:.【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.三、解答题(共78分)19、(1)③④;(2)详见解析;(3)小明的说法正确.【解析】
(1)由特殊四边形的性质,可知菱形和正方形的对角线互相垂直;(2)首先根据三角形中位线定理和平行四边形的判定定理证明四边形EFGH是平行四边形,然后再证明HG⊥HE即可;(3)由S四边形【详解】答:(1)③④(2)证明:∵H、G分别是AD、CD∵E、F分别是AB、CB∴HG∥EF,HG=EF.∴四边形EFGH是平行四边形∵E、H分别是∴EH∥BD∵四边形ABCD是“正交四边形”∴AC⊥BD∴HG⊥HE∴四边形EFGH是矩形(3)答:小明的说法正确.证明:S=【点睛】此题考查中点四边形,矩形的判定,解题关键在于得出HG⊥HE.20、(1)详见解析;(2)A′(3,5),B′(5,5),C′(7,3);(3)点D′的坐标为(2a﹣1,2b﹣1).【解析】
(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【详解】(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为(2a﹣1,2b﹣1).【点睛】此题主要考查了位似图形的性质,根据题意得出对应点坐标是解题关键.21、见解析【解析】
平行四边形的对角相等,得∠B=∠D,结合AE⊥BC,AF⊥DC和BE=DF,由角边角定理证明△ABE全等△ADF,再由全等三角形对应边相等得DA=AB,最后根据邻边相等的平行四边形是菱形判定
四边形ABCD是菱形.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形【点睛】此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.22、(1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).【解析】
(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.【详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,∴S△ABC=AC•BC=×2×1=1.故答案为1;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=﹣x+;(3)当k>2时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;当k<2时,y=kx+2过B(5,1),1=5k+2,解得k=﹣,∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;(1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=﹣x+n,∵C点坐标是(1,1),∴1=﹣+n,解得n=,∴直线CP的解析式为y=﹣x+,∴P(2,).设直线AB:y=﹣x+交y轴于点D,则D(2,).将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).综上所述,所求P点坐标是(2,)或(2,).故答案为(2,)或(2,).【点睛】本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.23、(1)①y=﹣4x+2;②x>-;(2)①;②y1=2x+2.【解析】
(1)根据正比例函数的定义即可求解,再列出不等式即可求解;(2)根据一次函数与二元一次方程组的关系即可求解,把两点代入即可求解.【详解】解:(1)①∵y﹣2与x成正比例,设y﹣2=k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园科学活动中的人机协同双轨教学研究
- 科学建模在初中科学单元学习中的应用研究
- 2025劳动合同范本模板案例
- 2025年北京市汽车买卖合同模板
- 2025工程机械租赁合同范本
- 乘用车转向器生产线项目可行性研究报告(模板范文)
- 绢纺与丝织产业发展现状及趋势考核试卷
- 铅锌矿的矿石溶浸过程与浸出设备的工艺条件考核试卷
- 定期培训考核管理制度
- 学校各类社团管理制度
- GB/T 17772-2018土方机械保护结构的实验室鉴定挠曲极限量的规定
- 脑卒中风险评估(改良的弗明汉卒中量表)老年健康与医养结合服务管理
- 涡街流量计技术协议书
- 09S304 卫生设备安装图集
- 《弟子规》谨篇(课件)
- 膝关节骨性关节炎的防治课件
- 防蛇虫咬伤防中暑课件
- 车辆购置税和车船税课件
- 国开电大《人员招聘与培训实务》形考任务4国家开放大学试题答案
- 2023年徐州市泉山区工会系统招聘考试笔试题库及答案解析
- 水泥厂高压电机试验报告(样表)
评论
0/150
提交评论