版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
无人机实验报告篇一:无人机研发报告飞行器可用于民用事业、满足国防需求,也可以开发和利用航空资源,国内外对飞行器都进行了大量的研究飞行器的研究主要分为三个类型,固定翼机、旋翼机和扑翼机。无人飞行器(UAV)自主飞行的技术多年来一直是航空领域研究的热点,并且在实际应用中存在大量的需求,例如军事(侦察目标捕获与营救任务等),科学数据采集(地质、林业勘探、农业病虫害防治等),视频监控(航拍FPV、影视制作等)等。利用无人飞行器来完成上述任务可以大大降低成本和提高人员安全保障。四轴飞行器具备VTOL(VerticalTake-OffandLanding,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。它是无人飞行器(UAV)的一种特殊机型,其具有十字排列的四个螺旋桨方便起飞与控制,在低空低速状态,可以在狭小的空间里执行任务。与其他无人机比较,由于结构简单,方便携带且维护成本低。无人自主飞行平台能够自主飞行并完成相应任务,与通用有人飞机相比,其造价低廉,可维护性,使用费用都具有明显优势。在近年来的历次战争中,发挥着重要作用,在民用方面与救灾领域运用前景广阔,例如无人机可在发生灾害后及时实施监控灾情,对救灾和灾害处理产生有益影响。因此对于四轴飞行器的研究具有重大的现实意义。四旋翼结构最早在20世纪初就已经出现,对于当时的科技水平人们尝试了许多方法,都没很好的完成控制飞行。直到上世纪90年代,随着微型计算机、传感器、通讯技术、能源以及控制理论的发展,给四旋翼的发展带来了质的飞跃,四旋翼的研究已经成为时代的热点。20世纪90年代之后,随着微机电系统(MEMS)研究的成熟,几克重的MEMS惯性导航系统被制作了出来,使得多旋翼飞行器的自动控制器可以做了。但是MEMS传感器数据噪音很大,不能直接读出来用,于是人们又花了一些年的时间研究MEMS去噪声的各种数学算法。这些算法以及自动控制器本身通常需要速度比较快的单片机来运行,于是人们又等了一些年时间,等速度比较快的单片机诞生。接着人们再花了若干年的时间理解多旋翼飞行器的非线性系统结构,给它建模、设计控制算法、实现控制算法。因此,直到2005年左右,真正稳定的多旋翼无人机自动控制器才被制作出来。之前一直被各种技术瓶颈限制住的多旋翼飞行器系统突然出现在人们视野中,大家惊奇地发现居然有这样一种小巧、稳定、可垂直起降、机械结构简单的飞行器存在。一时间研究者趋之若鹜,纷纷开始多旋翼飞行器的研发和使用。四旋翼飞行器是多旋翼飞行器中最简单最流行的一种。如上所述,最初的一段时间主要是学术研究人员研究四旋翼。2010年,法国Parrot公司发布了世界上首款流行的四旋翼飞行器AR.Drone。作为一个高科技玩具,它的性能非常优秀:轻便、灵活、安全、控制简单,还能通过传感器悬停,用WIFI传送相机图像到手机上。现在的四轴飞行器设计主要是基于经典PID和互补滤波算法的控制系统,飞行器飞行控制算法的设计一直是控制领域众多研究者最关心和最关键的问题之一。传统的控制策略是在飞行器系统的某个特定作用点上首先将系统模型线性化,然后在此基础上运用经典控制理论对系统进行分析和控制,控制精度和控制能力相对偏弱。相比之下,运用现代非线性控制理论设计的控制算法,其性能明显优于经典控制算法。总的来说,国内外对于四旋翼的研究主要集中在两个部分,其中一部分主要研究在系统建模和不同控制策略的优异与否,例如宾夕法尼亚大学GRASP实验室设计制造的室内四旋翼飞行器,麻省理工学院所设计的四旋翼飞行器,它运用的为扩展卡尔曼算法对姿态传感器得到的数据进行融合滤波,达到稳定控制的目标。可以根据要求按照计划进行自主飞行,并可用过Wi-Fi与地面控制站交互信息。另一部分则更加侧重飞行器在具体应用中的研究,比较为人熟知的有亚马逊的“首要飞行”无人机送货项目。该无人机结合全球定位系统(GPS)从96个仓库之一直飞订货人门口派送低于5磅的货物,亚马迅86%的运送物品质量都满足此要求。到2013年亚马逊持续对该项目进行安全测试,以获得美国联邦航空管理局的批准。实际上在四旋翼的研究过程中,其模型机的研制还没有形成一个完备的理论体系,因此有必要从基础模型部分开始搭建研究实验平台。四旋翼飞行器需要完成稳定飞行以及各种姿态的控制,需要实现对其姿态的感知以及旋翼动力装置的控制。要实现操控人员对飞行器的控制,还要实现无线遥控功能。在四旋翼飞行器的整体研发设计中,飞行控制系统是最基本的组成部分,也是最重要的组成部分。飞行控制器配备各种传感器,以实现对飞行器姿态的测量;配备微控制器经程序设计实现控制系统核心,对传感器测量数据进行融合计算,根据姿态与位置,结合遥控量实现符合要求的控制输出;根据飞行控制器的运算输出,实现电机转速的控制。通过测量、运算、输出完成整个闭环控制系统。因此,飞行控制器的硬件组成部分主要包括姿态传感器、微控制器、电机驱动部分以及电机等。同时还要有合适的稳压电路模块和相应的无线通信模块来实现与地面控制系统的数据交换。如图1-1所示图1-1硬件结构框图在飞行器设计过程中,飞行器控制系统软件部分的设计也是极其重要的,软件系统由5部分构成:初始化模块、遥控器解码、姿态处理、综合处理单元和电机驱动。其中,在整个系统设计中,控制反馈环节中的姿态角求解问题,是整个四旋翼飞行器飞行控制器的核心部分之一。如图1-2所示图1-2程序整体结构在完成硬件系统和软件系统部分的设计并组装完成之后,我们四旋翼进行反复实验与调试试飞并对在实验过程中获得的姿态数据进行了分析处理。姿态解运算采用互补滤波方式,通过对陀螺仪角速度测量值高通滤波和加速度测量值低通滤波,形成互补方式进行姿态角估算。如图1-3所示,使用上位机显示姿态融合前后X轴偏角的波形。红色:加速度计算出的角度;绿色:滤波后的角度。图1-3X轴偏角融合效果图可以看到最前面静止区域,绿色曲线几乎不受噪声影响,说明静止时滤波效果到达要求。图中A部分是静止时产生的数据,由于加速度传感器受噪声污染严重,所以,波形震动较大,对比绿色曲线,说明滤波效果较好;B部分是飞行器从水平状态,绕Y轴旋转后不同姿态所得角度融合的结果;C部分是晃动时的数据,加速度传感器受干扰严重,对比绿色曲线,说明互补滤波在本设计中达到了不错的效果。姿态解算出四旋翼飞行器的俯仰角(Pitch)、翻滚角(Roll)、偏航角(Yaw),倾角曲线如图1-4所示,蓝色是俯仰角,红色是翻滚角,绿色是偏航角。从图像上看,姿态角几乎不受噪声影响。图1-4姿态欧拉角曲线图在试飞过程中,我们对姿态的稳定性能和指令跟踪性能进行实际飞行测试,即分别测试遥控器指令信号为0时四旋翼的姿态保持性能和遥控指令信号发生变化时四旋翼姿态对指令信号的跟踪性能。在[0,60]秒内,滚转和俯仰通道的遥控器指令信号均保持为0,由图1-5(a)和图1-5(c)可以看出,四旋翼的滚转角和俯仰角能够稳定在较小角度内。对于滚转通道,在[60,110]秒区间内,不断小角度变化指令信号,由图1-5(a)可以看出,实际角度基本能够实现对指令信号的快速跟踪;在[110,130]秒区间内,指令信号大范围持续变化,由放大图1-5(b)可以看出,实际滚转角同样能够实现快速大角度下的指令信号跟踪,而在指令信号恢复为小角度甚至0时,实际滚转角仍然具有良好的响应表现。图1-5(a)翻滚通道性能测试图1-5(b)翻滚通道性能测试图1-5(c)俯仰通道性能测试图1-5(d)偏航通道稳定保持测试由图1-5(c)可以看出,实际俯仰角能够实现快速大角度下的指令信号跟踪,而在指令信号恢复为小角度甚至0时,实际俯仰角仍然具有良好的响应性能。对于偏航通道我们进行了稳定保持性能测试,即指令偏航角速率始终为0,考察偏航通道的保持性能,测试结果如图1-5(d)所示,可以看出,在进行上述滚转、俯仰通道测试过程中,偏航通道角度能够保持在5度以内,达到了很高的稳定保持性能。由上述姿态测试可以看出,设计的飞行控制系统能够对姿态实现较高精度的稳定保持和指令跟踪控制,表现出优秀的控制性能。在对四旋翼的多次试飞试验中发现,飞行器的姿态控制,其俯仰角度与横滚角度的控制误差可以保持在10度以内,但是偏航角度则经常出现震荡。经分析,偏航角度只有靠1个单轴电子式陀螺仪测量,其温漂导致测量精度与准确度大大下降,使得控制器性能大大降低。由于陀螺仪传感器几乎不受震动的影响,陀螺仪产生的误差主要是长时间积分的累积误差。短时间内,陀螺仪数据是可靠的;长时间内,需要加速度传感器对其校正,提高数据的可靠性。陀螺仪传感器数据在积分过程中,时间积分为0的噪声数据会被平滑滤掉。在加速度计与陀螺仪测量值之间设定固定权值,所得姿态角能够满足飞行器基本飞行动作需求。依据实验结果,姿态融合算法存在以下几个方面问题:(1)测量姿态角时,由于陀螺仪测量角速度随着积分时间的增长,误差会逐渐增大,需要采用加速度对角速度积分进行短期与长期融合修正;(2)采用固定权值进行姿态融合过程中,融合得到姿态角与最终姿态角有一定差距,固定权值的取值需进行多次试验,并且权值需保留一定的精度才能取得更好的效果;(3)在嵌入式设备中,类似互补滤波算法以及四元数等运算,仍然需要较长的处理时间;(4)飞行器偏航角测量是采用陀螺仪角速度计Z轴时间积分,角速度值积分短时间内是比较准确,但是积分时间越长,误差则会逐渐积累,所得偏航角与实际偏航角误差很大。则单独使用积分无法得到准确偏航角。试验中发现,飞行器的姿态控制,其俯仰角度与横滚角度的控制误差可以保持在5度以内,但是偏航角度则经常出现震荡。经分析,偏航角度只有靠1个单轴电子式陀螺仪测量,其温漂导致测量精度与准确度大大下降,使得控制器性能大大降低。四旋翼飞行器的稳定性需要进一步实验调试,经多次实验才能得到更加稳定的飞行控制参数。四旋翼飞行器有着特殊的结构,在军事、工业及民用领域均有广阔前景。固定翼飞行器需要通过控制螺旋桨浆距以完成不同飞行动作,与固定翼飞行器不同的是,四旋翼飞行器仅仅调整四个螺旋桨不同转速即可完成各种飞行动作,且有着极高的灵敏度。通过设置不同系统参数,还可实现对飞行器稳定性及反应灵敏度进行灵活控制,满足各种应用场合不同需求。在未来的研究中,四旋翼的研究必将成为拥有很广的应用价值和使用前景,可以说,在未来的10-20年,无人机行业必将进入黄金发展轨道。篇二:无人机实习报告专业:班级:姓名:学号:实践单位:无人机特种技术国防科技重点实验室实践时间:一、实习目的通过对无人机特种技术国防科技重点实验室的四个实验室进行有针对性的参观、学习,可以提高对本专业的了解和认识,增加学习兴趣和增强专业自豪感,为日后专业知识的学习打下良好的基础。同时,实习对学生了解社会、接触生产实际、加强劳动观念、培养动手能力和理论与实践相结合的能力等方面亦具有重要的意义。二、实习内容2012年10月15日下午,我们在班主任老师的带领下到位于高新区的无人机所进行参观、学习。西北工业大学第365研究所(西安爱生技术集团公司)隶属于西北工业大学,坐落于陕西省西安市国家级高新技术产业开发区,是以无人机研发为主,集科、工、贸于一体的具有独立法人资格的现代高科技企业。国防科技实验室体系由国防科技国家实验室、国防科技重点实验室、国防重点学科实验室三类实验室构成。其中,国家实验室是综合型的实验室,主要从事国防重大基础研究、战略高技术和系统集成技术研究;重点实验室是专业型的实验室,主要从事探索性、创新性和重大关键技术的基础与应用基础研究;学科实验室是基础型的实验室,主要从事国防基础科学和前沿技术领域的新原理、新方法、新技术研究。三类实验室定位和功能不同,相互促进,协调发展。通过本次参观,我们国防意识、专业认知以及目标性都加强了。进入实验室大楼,就被实验室的简介所吸引,我们都知道2009年10月1日,在60年国庆大阅兵中,首次亮相的无人机方队全部3个型号均由西工大研制生产。于是我们怀着无限的向往进入实验室参观。第一个实验室是通用半物理仿真/红外末制导仿真系统,以及很多无人机上的零件,如陀螺仪,导航芯片,多级,电源,发电机等等。讲解人员给我们一一介绍了无人机的各种组件,这些都是最最基础的元器件,有很多我们都在学校学习过,介绍过程中,将实物与所学知识相结合,加深了认识。介绍内容包括传感器、陀螺、发电机、液压系统等,其中,传感器让我回忆起好多之前的知识,而我对我们正在学习的陀螺和电机方面的介绍特别感兴趣。在实物的帮助下,一些课堂上难以理解的地方马上就清晰啦。液压方面,结合大二上学期的那次派克之旅,了解了更多关于液压的知识。第二个实验是视景仿真、射频末制导仿真系统、综合测试暗室,在这里主要是进行飞行环境的仿真与数据的采集。在暗室里模拟无人机的飞行环境,主要是天空电磁环境,通过全天候的红外拍摄,将数据采集到实验室计算机上。然后在科研人员的操作下,对仿真结果分析,提出方案。我们参观时,实验室正在进行实验,不得不说场面还是很壮观的,我们是好奇又叹服。第三个实验是四旋翼仿真系统,以及无人直升机的性能测试。一进入实验室就有一种亲切的感觉,哪些轻木做的航模曾经也从我们手中飞起过。当然这的实验台要高级的多。在四旋翼仿真系统前,我们与班主任及讲解员讨论了许久,认识了许多新的知识和概念。这样的系统,在国外影片中有见过,但是,作为大学生的我真的很难完成这样的工程系统,由此,我看见了自己与他人的差距,日后还要继续努力才行。第四个实验是地面站、地形跟随仿真系统、起降模拟系统,这里主要是对无人机起降与飞行过程的模拟与监控。看着一个个的显示台和操作柄,感觉自己已经身临其境了。讲解人员向我们介绍了模拟系统后,又向我们示范了无人机的起飞与转弯过程,让我们更直观的了解无人机的飞行过程。三、实习总结虽然实习时间很短,但是我们还是学到了很多知识,无论是元件的还是系统的,都有了更全面的了解。一方面,我们加深了专业知识的认知和理解。另一方面,我们也看见了专业的前景,提高了学习的兴趣。但是,同时我们也不可忽视一些问题。虽然我们的科研一直都在进步,但是与发达国家的差距还是很大,我们不可能依靠他们的帮助而前进,只有我们的科研人员脚踏实地的进行研究,才有希望。而我们现在必须加强文化与道德的学习,将来为我国的科技进步做贡献。篇三:无人机实习报告飞行器可用于民用事业、满足国防需求,也可以开发和利用航空资源,国内外对飞行器都进行了大量的研究飞行器的研究主要分为三个类型,固定翼机、旋翼机和扑翼机。无人飞行器(UAV)自主飞行的技术多年来一直是航空领域研究的热点,并且在实际应用中存在大量的需求,例如军事(侦察目标捕获与营救任务等),科学数据采集(地质、林业勘探、农业病虫害防治等),视频监控(航拍FPV、影视制作等)等。利用无人飞行器来完成上述任务可以大大降低成本和提高人员安全保障。四轴飞行器具备VTOL(VerticalTake-OffandLanding,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。它是无人飞行器(UAV)的一种特殊机型,其具有十字排列的四个螺旋桨方便起飞与控制,在低空低速状态,可以在狭小的空间里执行任务。与其他无人机比较,由于结构简单,方便携带且维护成本低。无人自主飞行平台能够自主飞行并完成相应任务,与通用有人飞机相比,其造价低廉,可维护性,使用费用都具有明显优势。在近年来的历次战争中,发挥着重要作用,在民用方面与救灾领域运用前景广阔,例如无人机可在发生灾害后及时实施监控灾情,对救灾和灾害处理产生有益影响。因此对于四轴飞行器的研究具有重大的现实意义。四旋翼结构最早在20世纪初就已经出现,对于当时的科技水平人们尝试了许多方法,都没很好的完成控制飞行。直到上世纪90年代,随着微型计算机、传感器、通讯技术、能源以及控制理论的发展,给四旋翼的发展带来了质的飞跃,四旋翼的研究已经成为时代的热点。20世纪90年代之后,随着微机电系统(MEMS)研究的成熟,几克重的MEMS惯性导航系统被制作了出来,使得多旋翼飞行器的自动控制器可以做了。但是MEMS传感器数据噪音很大,不能直接读出来用,于是人们又花了一些年的时间研究MEMS去噪声的各种数学算法。这些算法以及自动控制器本身通常需要速度比较快的单片机来运行,于是人们又等了一些年时间,等速度比较快的单片机诞生。接着人们再花了若干年的时间理解多旋翼飞行器的非线性系统结构,给它建模、设计控制算法、实现控制算法。因此,直到2005年左右,真正稳定的多旋翼无人机自动控制器才被制作出来。之前一直被各种技术瓶颈限制住的多旋翼飞行器系统突然出现在人们视野中,大家惊奇地发现居然有这样一种小巧、稳定、可垂直起降、机械结构简单的飞行器存在。一时间研究者趋之若鹜,纷纷开始多旋翼飞行器的研发和使用。四旋翼飞行器是多旋翼飞行器中最简单最流行的一种。如上所述,最初的一段时间主要是学术研究人员研究四旋翼。2010年,法国Parrot公司发布了世界上首款流行的四旋翼飞行器AR.Drone。作为一个高科技玩具,它的性能非常优秀:轻便、灵活、安全、控制简单,还能通过传感器悬停,用WIFI传送相机图像到手机上。现在的四轴飞行器设计主要是基于经典PID和互补滤波算法的控制系统,飞行器飞行控制算法的设计一直是控制领域众多研究者最关心和最关键的问题之一。传统的控制策略是在飞行器系统的某个特定作用点上首先将系统模型线性化,然后在此基础上运用经典控制理论对系统进行分析和控制,控制精度和控制能力相对偏弱。相比之下,运用现代非线性控制理论设计的控制算法,其性能明显优于经典控制算法。总的来说,国内外对于四旋翼的研究主要集中在两个部分,其中一部分主要研究在系统建模和不同控制策略的优异与否,例如宾夕法尼亚大学GRASP实验室设计制造的室内四旋翼飞行器,麻省理工学院所设计的四旋翼飞行器,它运用的为扩展卡尔曼算法对姿态传感器得到的数据进行融合滤波,达到稳定控制的目标。可以根据要求按照计划进行自主飞行,并可用过Wi-Fi与地面控制站交互信息。另一部分则更加侧重飞行器在具体应用中的研究,比较为人熟知的有亚马逊的“首要飞行”无人机送货项目。该无人机结合全球定位系统(GPS)从96个仓库之一直飞订货人门口派送低于5磅的货物,亚马迅86%的运送物品质量都满足此要求。到2013年亚马逊持续对该项目进行安全测试,以获得美国联邦航空管理局的批准。实际上在四旋翼的研究过程中,其模型机的研制还没有形成一个完备的理论体系,因此有必要从基础模型部分开始搭建研究实验平台。四旋翼飞行器需要完成稳定飞行以及各种姿态的控制,需要实现对其姿态的感知以及旋翼动力装置的控制。要实现操控人员对飞行器的控制,还要实现无线遥控功能。在四旋翼飞行器的整体研发设计中,飞行控制系统是最基本的组成部分,也是最重要的组成部分。飞行控制器配备各种传感器,以实现对飞行器姿态的测量;配备微控制器经程序设计实现控制系统核心,对传感器测量数据进行融合计算,根据姿态与位置,结合遥控量实现符合要求的控制输出;根据飞行控制器的运算输出,实现电机转速的控制。通过测量、运算、输出完成整个闭环控制系统。因此,飞行控制器的硬件组成部分主要包括姿态传感器、微控制器、电机驱动部分以及电机等。同时还要有合适的稳压电路模块和相应的无线通信模块来实现与地面控制系统的数据交换。如图1-1所示微控制器微控制器无线无线接收接收模块模块33轴重力轴重力加速度传加速度传感器感器33轴电子轴电子陀螺仪传陀螺仪传感器感器电机驱电机驱动模块动模块电电机机稳压电源模块稳压电源模块在飞行器设计过程中,飞行器控制系统软件部分的设计也是极其重要的,软件系统由5部分构成:初始化模块、遥控器解码、姿态处理、综合处理单元和电机驱动。其中,在整个系统设计中,控制反馈环节中的姿态角求解问题,是整个四旋翼飞行器飞行控制器的核心部分之一初始化模块遥控器解码综合处理单元电机驱动姿态处理在完成硬件系统和软件系统部分的设计并组装完成之后,我们四旋翼进行反复实验与调试试飞并对在实验过程中获得的姿态数据进行了分析处理。姿态解运算采用互补滤波方式,通过对陀螺仪角速度测量值高通滤波和加速度测量值低通滤波,形成互补方式进行姿态角估算。如图1-3所示,使用上位机显示姿态融合前后X轴偏角的波形。红色:加速度计算出的角度;绿色:滤波后的角度。可以看到最前面静止区域,绿色曲线几乎不受噪声影响,说明静止时滤波效果到达要求。图中A部分是静止时产生的数据,由于加速度传感器受噪声污染严重,所以,波形震动较大,对比绿色曲线,说明滤波效果较好;B部分是飞行器从水平状态,绕Y轴旋转后不同姿态所得角度融合的结果;C部分是晃动时的数据,加速度传感器受干扰严重,对比绿色曲线,说明互补滤波在本设计中达到了不错的效果。姿态解算出四旋翼飞行器的俯仰角(Pitch)、翻滚角(Roll)、偏航角(Yaw),倾角曲线如图1-4所示,蓝色是俯仰角,红色是翻滚角,绿色是偏航角。从图像上看,姿态角几乎不受噪声影响。在试飞过程中,我们对姿态的稳定性能和指令跟踪性能进行实际飞行测试,即分别测试遥控器指令信号为0时四旋翼的姿态保持性能和遥控指令信号发生变化时四旋翼姿态对指令信号的跟踪性能。在[0,60]秒内,滚转和俯仰通道的遥控器指令信号均保持为0,)和,四旋翼的滚转角和俯仰角能够稳定在较小角度内。对于滚转通道,在[60,110]秒区间内,不断小角度变化指令信号,由)可以,实际角度基本能够实现对指令信号的快速跟踪;在[110,130]秒区间内,指令信号大范围持续变化,由放大图1-5(b)可以看出,实际滚转角同样能够实现快速大角度下的指令信号跟踪,而在指令信号恢复为小角度甚至0时,实际滚转角仍然具有良好的响应表现。由图1-5(c)可以看出,实际俯仰角能够实现快速大角度下的指令信号跟踪,而在指令信号恢复为小角度甚至0时,实际俯仰角仍然具有良好的响应性能。对于偏航通道我们进行了稳定保持性能测试,即指令偏航角速率始终为0,考察偏航通道的保持性能,测试结果如图1-5(d)所示,可以看出,在进行上述滚转、俯仰通道测试过程中,偏航通道角度能够保持在5度以内,达到了很高的稳定保持性能。由上述姿态测试可以看出,设计的飞行控制系统能够对姿态实现较高精度的稳定保持和指令跟踪控制,表现出优秀的控制性能。在对四旋翼的多次试飞试验中发现,飞行器的姿态控制,其俯仰角度与横滚角度的控制误差可以保持在10度以内,但是偏航角度则经常出现震荡。经分析,偏航角度只有靠1个单轴电子式陀螺仪测量,其温漂导致测量精度与准确度大大下降,使得控制器性能大大降低。由于陀螺仪传感器几乎不受震动的影响,陀螺仪产生的误差主要是长时间积分的累积误差。短时间内,陀螺仪数据是可靠的;长时间内,需要加速度传感器对其校正,提高数据的可靠性。陀螺仪传感器数据在积分过程中,时间积分为0的噪声数据会被平滑滤掉。在加速度计与陀螺仪测量值之间设定固定权值,所得姿态角能够满足飞行器基本飞行动作需求。依据实验结果,姿态融合算法存在以下几个方面问题:(1)测量姿态角时,由于陀螺仪测量角速度随着积分时间的增长,误差会逐渐增大,需要采用加速度对角速度积分进行短期与长期融合修正;(2)采用固定权值进行姿态融合过程中,融合得到姿态角与最终姿态角有一定差距,固定权值的取值需进行多次试验,并且权值需保留一定的精度才能取得更好的效果;(3)在嵌入式设备中,类似互补滤波算法以及四元数等运算,仍然需要较长的处理时间;(4)飞行器偏航角测量是采用陀螺仪角速度计Z轴时间积分,角速度值积分短时间内是比较准确,但是积分时间越长,误差则会逐渐积累,所得偏航角与实际偏航角误差很大。则单独使用积分无法得到准确偏航角。试验中发现,飞行器的姿态控制,其俯仰角度与横滚角度的控制误差可以保持在5度以内,但是偏航角度则经常出现震荡。经分析,偏航角度只有靠1个单轴电子式陀螺仪测量,其温漂导致测量精度与准确度大大下降,使得控制器性能大大降低。四旋翼飞行器的稳定性需要进一步实验调试,经多次实验才能得到更加稳定的飞行控制参数。四旋翼飞行器有着特殊的结构,在军事、工业及民用领域均有广阔前景。固定翼飞行器需要通过控制螺旋桨浆距以完成不同飞行动作,与固定翼飞行器不同的是,四旋翼飞行器仅仅调整四个螺旋桨不同转速即可完成各种飞行动作,且有着极高的灵敏度。通过设置不同系统参数,还可实现对飞行器稳定性及反应灵敏度进行灵活控制,满足各种应用场合不同需求。在未来的研究中,四旋翼的研究必将成为拥有很广的应用价值和使用前景,可以说,在未来的10-20年,无人机行业必将进入黄金发展轨道。篇四:无人机实习报告遥感飞机泛指用于航空遥感的各类飞机。如有人驾驶和无人驾驶飞机;固定翼或旋翼式(直升)飞机;高空或中、低空飞机等。遥感飞机主要作为遥感平台,装载各种传感器。通常是在机腹设置不同的窗口,便于对地观测。如安置航摄用的摄影机、多光谱摄影机以及各种扫描仪、辐射计、测高仪等。除进行遥感试验和生产作业外,遥感飞机还用于各种星载遥感仪器的模拟试验,为检验和改善星载仪器收集数据。无人驾驶飞机为空中遥感平台的微型航空遥感技术,其特点是以无人驾驶飞机为空中平台,以专用照相机、摄像机以及视频无线传输技术获取信息,用计算机对图像信息进行处理,并按照一定精度要求制作成图像。设备的基本性能其性能依目的不同略有区别,如遥感侦察要求升限大、速度快。一般遥感目的主要性能是稳定性好,续航时间长,具有多个仪器窗口,能提供较大的设备空间和能源供应等,对于侧视雷达遥感,还要求具有全天候飞行能力。价格无人机所用传感器决定无人机的价格,遥感传感器是根据不同类型的遥感任务,使用相应的机载遥感设备,如高分辨率CCD数码相机、轻型光学相机、多光谱成像仪、红外扫描仪,激光扫描仪、磁测仪、合成孔径雷达等。应用实践证明,以无人驾驶飞机为空中遥感平台的微型航空遥感技术,适应国家经济和文化建设发展的需要,为中小城市特别是城、镇、县、乡等地区经济和文化建设提供了有效的遥感技术服务手段。遥感航拍技术对我国经济的发展具有重要的促进作用。随着我国改革开放的逐步深入,经济建设迅猛发展,各地区的地貌发生巨大变迁。现有的航空遥感技术手段已无法适应经济发展的需要。新的遥感技术为日益发展的经济建设和文化事业服务。以无人驾驶飞机为空中遥感平台的技术,正是适应这一需要而发展起来的一项新型应用性技术,能够较好地满足现阶段我国对航空遥感业务的需求,对陈旧的地理资料进行更新。随着我国经济和文化建设的发展,不少古建筑、考古现场等发现、田野考古探索、城乡的地貌发生巨大变化。一些版图反映不出新的面貌。目前使用资料较为陈旧。常规的成图周期,已不能满足需要。我们利用遥感航拍技术更新的地理资料对地区的经济建设起到了积极的促进作用。为适应城镇发展的总体需求,提供综合地理、资源信息。正确、完整的信息资料是科学决策的基础。各地区、各部门在综合规划、田野考古、国土整治监控、农田水利建设、基础设施建设、厂矿建设、居民小区建设、环保和生态建设等方面,无不需要最新、最完整的地形地物资料,已成为各级政府部门和新建开发区急待解决的问题。我们用遥感航拍技术准确地反映出地区新发现的古迹、新建的街道、大桥、机场、车站以及土地、资源利用情况的综合信息。遥感航拍技术是各种先进手段优化组合的新型应用技术。航空遥感技术以低速无人驾驶飞机为空中遥感平台,用彩色、黑白、红外、摄像技术拍摄空中影像数据;并用计算机对图像信息加工处理。全系统在设计和最优化组合方面具有突出的特点,是集成了遥感、遥控、遥测技术与计算机技术的新型应用技术。无人驾驶飞机为航空遥感提供了操作方便,易于转场的遥感平台。可根据不同的需要选择不同类型的平台。起飞降落受场地限制较小,在操场、公路或其它较开阔的地面均可起降,其稳定性、安全性好,转场等非常容易。多用途、多功能的影像系统是获取遥感信息的重要手段。遥感航拍使用的摄影、摄像器材主要是经过改装的120照相机,拍摄黑白、彩色的负片及反转片。也可使用小型数字摄像机或视频无线传输技术进行彩色摄制。机载系统可将飞机下方的地面图像实时地传输到地面,实时显示、实时记录,用于导航和取景。拍摄人员根据地面监视器实时操纵飞机和拍摄。遥感航拍有着准确性和科学性。篇五:无人机实习报告1.无人机的应用无人机具有机动灵活的起降方式、低空循迹的自主飞行方式,具有快速响应的数据获取能力,应用到水利水电工程中具有重要作用与显著优势,例如:1.水利工程的安全与环境检测2.水利工程的测绘3.动态监测及水域环境监测4.水土环境检测5.航摄成图6.电力巡线2.具体应用及优点:1.水利工程的安全与环境检测无人机进行低空遥感,完成快速测绘及信息监测,具有数据分辨率高、实施快速等优点。利用无人机机动性强,图像分辨率高等特点,结合空间信息技术手段,将高分辨率影像和高精度GPS系统结合起来,为工程生态环境提高直观的分析和科学决策的依据,为大型提防工程、水库及其他水利工程提高有效的安全监测。2.水利工程的测绘以无人机作为遥感飞行平台,在机体上荷载数据遥感设备,利用遥感数据处理系统作为技术支撑,可以实时对地或对目标水域进行观测及数据的快速处理。完成数字线规划图、数字高程模型、数字正射影像图的绘制,为工程建设提供重要的信息。3.动态监测及水域环境监测利用无人机遥感图像技术,根据水利工程区域内不同时间段的监测图像进行假彩色合成,能够分析该时间段内水域的淹没范围,能够分析水流移动方向和移动速度;利用红外波段的水体辐射率同其他地物辐射率相比,存在较大差异的特点,针对目前水域,选择合适的红外波段,确定水体的阈值。将红外波段辐射过后阈值在该范围内的定位水体,高出阈值的定义为非水体,根据该原理,可以计算水利工程区域内水位值及水位覆盖面积。对水域实施动态监测,能够查明范围内水域的变化情况,通过掌握的水域基础数据来建立水域调查、水域统计及其他管理制度,逐步实现水域管理的信息化,满足社会经济发展和水域管理的需要。利用水域动态监测结果,建立水域变化及非法水域占用资料,为水利管理提供依据4.水土环境检测水土保持是水利工程重要作用之一,由于水利工程规模较大,对水域内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内审和管理评审培训课件
- 手球指纹课件教学课件
- 营养门诊课件教学课件
- 第三章第一节第二课时铁盐和亚铁盐高一上学期化学人教版(2019)必修第一册
- 护理学科建设竞聘
- 2.3.2气体摩尔体积 课件 高一上学期化学人教版(2019)必修第一册
- 新食品安全责任制度
- 沉与浮科学教案反思
- 化学反应速率说课稿
- 好玩的沙子说课稿
- 盆底超声检查课件
- DB3205T 1016-2021 河湖健康评价规范
- 中医治疗疫病的优势与前景共31张课件
- 考研复习有机化学选择题400题(页尾附答案)
- 初中语文-科幻小说阅读指导-课件(共30张)
- 灌注桩桩头破除综合施工专题方案付
- 文献检索-期刊以及核心期刊与期刊分类课件
- 管理人员名单及监督电话牌
- 酸碱废气处理喷淋塔使用说明书
- -抚顺市集装袋厂聚烯烃集装袋生产项目环境影响评价文件
- 武汉市硚口区面向社会公开招考217名社区干事(必考题)模拟卷和答案
评论
0/150
提交评论