版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区乌鲁木齐市2024年中考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°2.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. B. C. D.3.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A.116 B.120 C.121 D.1264.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥35.如图,在中,,,,则等于()A. B. C. D.6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=8.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm9.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定10.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数字338600000用科学记数法可简洁表示为()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×10911.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:312.如图是由四个相同的小正方体堆成的物体,它的正视图是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为______.14.因式分解a3-6a2+9a=_____.15.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.11115,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币.平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.16.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.17.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.18.2017我市社会消费品零售总额,科学记数法表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.(1)求A,B两点间的距离(结果精确到0.1km).(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)20.(6分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?21.(6分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.22.(8分)解方程组.23.(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.(10分)如图1,抛物线y1=ax1﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.25.(10分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.26.(12分)解不等式组,并把解集在数轴上表示出来.27.(12分)如图,在四边形中,为的中点,于点,,,,求的度数.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.2、A【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.3、C【解析】
根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.【详解】甲所写的数为1,3,1,7,…,49,…;乙所写的数为1,6,11,16,…,设甲所写的第n个数为49,根据题意得:49=1+(n﹣1)×2,整理得:2(n﹣1)=48,即n﹣1=24,解得:n=21,则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,故选:C.【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键.4、A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.6、A【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!7、D【解析】
依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【详解】A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=-3x+1与x轴交于(,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D.反比例函数y=与x轴没有交点,符合题意;故选D.8、D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.9、C【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.【详解】解:设的两根为x1,x2,∵由二次函数的图象可知,,.设方程的两根为m,n,则.故选C.【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.10、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338600000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法—表示较大的数.11、A【解析】
先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:==25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.12、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A.【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、y=【解析】解:设这个反比例函数的表达式为y=.∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=.故答案为y=.点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.14、a(a-3)2【解析】
根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.【详解】解:故答案为:.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.15、21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人=21元.16、【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.17、m>1【解析】∵反比例函数的图象在其每个象限内,y随x的增大而减小,∴>0,解得:m>1,故答案为m>1.18、1.88×1【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:科学记数法表示为1.88×1,故答案为:1.88×1.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1.7km;(2)8.9km;【解析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.【详解】解:(1)由题意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,∴AO=OC•tan34°,BO=OC•tan45°,∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,即A,B两点间的距离是1.7km;(2)由已知可得,∠DOC=90°,OC=5km,∠DCO=56°,∴cos∠DCO=即∵sin34°=cos56°,∴解得,CD≈8.9答:此时雷达站C和运载火箭D两点间的距离是8.9km.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.20、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.【解析】
(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【详解】(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(2)列表得:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),∴最后落回到圈A的概率P2==,∴她与嘉嘉落回到圈A的可能性一样.【点睛】此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.21、(1)证明见解析;(2)25°.【解析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直径,PA与相切于点A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.22、或.【解析】
把y=x代入,解得x的值,然后即可求出y的值;【详解】把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,当x=﹣2时,y=﹣2,当x=1时,y=1,∴原方程组的解是或.【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数.23、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.【解析】
(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.【详解】解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20∴当0≤x≤8时,y=10x+20.当8<x≤a时,设y=,将(8,100)的坐标代入y=,得k2=800∴当8<x≤a时,y=.综上,当0≤x≤8时,y=10x+20;当8<x≤a时,y=(2)将y=20代入y=,解得x=40,即a=40.(3)当y=40时,x==20∴要想喝到不低于40℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.24、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)应用待定系数法求解析式;(1)设出点T坐标,表示△TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.【详解】解:(1)由已知,c=,将B(1,0)代入,得:a﹣=0,解得a=﹣,抛物线解析式为y1=x1-x+,∵抛物线y1平移后得到y1,且顶点为B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,),过点T作TE⊥y轴于E,则TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1﹣t+=,解得:t1=,t1=;当TA=AC时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《食品的污染及预防》课件
- 高考语文专题复习课件:文言文词类活用
- 2024年度企业间金融服务与风险管理合同
- 2024中国石油集团济柴动力限公司长庆压缩机维修服务分公司招聘(内蒙古)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信浙江公司社会招聘179易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度网站建设及运营合同
- 2024中国医药健康产业股份限公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国中煤能源集团限公司平朔工业集团高校毕业生招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 2024下半年贵州六盘水市事业单位及国企业招聘应征入伍大学毕业生164人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海城投水务(集团)限公司招聘129人易考易错模拟试题(共500题)试卷后附参考答案
- Invoice商业发票模板
- 金属平衡管理办法
- 退房通知书模板
- 行政服务中心窗口工作人员手册
- 初中语文教学中生本理念的实践分析
- 饮料与健康调查活动报告书
- 四年级奥数-追及问题
- 中国移动通信集团应聘信息表
- 最新患者用药情况监测
- 基于单片机的电子频率计的设计设计
- 深圳市建筑装饰工程消耗量标准(第三版)2003
评论
0/150
提交评论