版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市小坪中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.集合,则M∩N等于(
)A. B. C. D.参考答案:B试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2.数列,3,,,,…,则9是这个数列的第()A.12项B.13项
C.14项
D.15项参考答案:C略3.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为() A. B. C. D.参考答案:D【考点】椭圆的简单性质. 【专题】计算题;圆锥曲线的定义、性质与方程. 【分析】设|PF1|=t,则由∠F1PQ=60°,|PF1|=|PQ|,推出PQ|=t,|F1Q|=t,且F2为PQ的中点,根据椭圆定义可知|PF1|+|PF2|=2a用t表示,根据等边三角形的高,求出2c用t表示,再由椭圆的离心率公式e=,即可得到答案. 【解答】解:设|PF1|=t, ∵|PF1|=|PQ|,∠F1PQ=60°, ∴|PQ|=t,|F1Q|=t, 由△F1PQ为等边三角形,得|F1P|=|F1Q|, 由对称性可知,PQ垂直于x轴, F2为PQ的中点,|PF2|=, ∴|F1F2|=,即2c=, 由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t, ∴椭圆的离心率为:e===. 故选D. 【点评】本题主要考查了椭圆的简单性质,离心率的求法,考查了学生对椭圆定义的理解和运用. 4.在中,,,,则A.B.C.或D.或参考答案:D5.已知为等比数列.下面结论中正确的是()A. B.C.若,则 D.若,则参考答案:B略6.若复数z的实部为1,且,则复数z的虚部是(
)A.i
B.±i
C.-
D.±参考答案:D7.已知,,直线过点且与线段相交,则直线的斜率的取值范围是(
)
A.或
B.C.
D.参考答案:A略8.设,,若,则的取值范围是A.
B.
C.
D.参考答案:A略9.一直线过点(0,4),并且在两坐标轴上截距之和为8,则这条直线方程是_____
_____.参考答案:10.(5分)商家生产一种产品,需要先进行市场调研,计划对天津、成都、深圳三地进行市场调研,待调研结束后决定生产的产品数量,下列四种方案中最可取的是()
参考答案:D方案A.立顶→派出调研人员先后赴深圳、天津、成都调研,待调研人员回来后决定生产数量.方案B.立顶→派出调研人员先齐头并进赴深圳、天津调研,结束再赴成都调研,待调研人员回来后决定生产数量.方案C.立顶→派出调研人员先赴成都调研,结束后再齐头并进赴深圳、天津调研,待调研人员回来后决定生产数量.方案D.分别派出调研人员齐头并进赴三地搞调研,以便提早结束调研,尽早投产.通过四种方案的比较,方案D更为可取.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是
(结果用最简分数表示).参考答案:12.已知,且与的夹角为钝角,则实数的取值范围是----______参考答案:略13.若函数f(x)=x3+bx(x∈R)在点(﹣1,f(﹣1))处的切线与直线y=﹣x+2a平行,则实数b的值
.参考答案:﹣4【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,得到f′(1),由函数f(x)=x3+bx(x∈R)在点(﹣1,f(﹣1))处的切线与直线y=﹣x+2a平行即可求得b值.【解答】解:由f(x)=x3+bx,得f′(x)=3x2+b,∴f′(1)=3+b,∵函数f(x)=x3+bx(x∈R)在点(﹣1,f(﹣1))处的切线与直线y=﹣x+2a平行,∴3+b=﹣1,解得b=﹣4.故答案为:﹣4.【点评】本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.14.已知变量x,y满足约束条件,则z=3x+y的最大值是
.参考答案:1115.设z=+i,则|z|=.参考答案:【考点】A8:复数求模.【分析】直接利用是分母实数化,然后求模即可.【解答】解:z=+i=+i=.|z|==.故答案为:.16.已知的平均数为a,方差为b,则的平均数是_____,标准差是
___
参考答案:3a+2,略17.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c=
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知菱形ABCD的一边所在直线方程为,一条对角线的两个端点分别为和.(1)求对角线AC和BD所在直线的方程;(2)求菱形另三边所在直线的方程.参考答案:AC:,BD:三边为,,19.已知△ABC的三边长是,且为正数,求证:。参考答案:证明:设,易知是的递增区间,即而20.在大学生运动会中,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱.
(Ⅰ)根据以上数据完成以下2×2列联表:
喜爱运动不喜爱运动总计男
女
总计
(Ⅱ)根据独立性检验,能否有90%的把握认为性别与喜爱运动有关?参考答案:解:(Ⅰ)
喜爱运动不喜爱运动总计男10616女6814总计161430
…………6分
(Ⅱ)假设喜爱运动与性别无关,由已知数据可求得: 因此,没有90%的把握认为喜爱运动与性别有关.
………………12分
略21.在边长为2的正方体ABCD﹣A′B′C′D′中,E是BC的中点,F是DD′的中点(1)求证:CF∥平面A′DE(2)求二面角E﹣A′D﹣A的平面角的余弦值.参考答案:【考点】用空间向量求平面间的夹角;向量语言表述线面的垂直、平行关系.【分析】(1)分别以DA,DC,DD'为x轴,y轴,z轴建立空间直角坐标系,求出各顶点坐标后,进而求出直线CF的方向向量和平面A'DE的法向量,根据两个向量的数量积为0,得到两个向量垂直后,进而得到CF∥平面A'DE(2)结合正方体的几何特征,可得是面AA'D的法向量,结合(1)中平面A'DE的法向量为,代入向量夹角公式,即可求出二面角E﹣A'D﹣A的平面角的余弦值.【解答】证明(1):分别以DA,DC,DD'为x轴,y轴,z轴建立空间直角坐标系,则A'(2,0,2),E(1,2,0),D(0,0,0),C(0,2,0),F(0,0,1),…则,设平面A'DE的法向量是,则,取,…,∵,∴,所以,CF∥平面A'DE.…解:(2)由正方体的几何特征可得是面AA'D的法向量又由(1)中向量为平面A'DE的法向量故二面角E﹣A'D﹣A的平面角θ满足;即二面角E﹣A'D﹣A的平面角的余弦值为…22.已知中心在原点的双曲线的渐近线方程是,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点作倾斜角为的直线交双曲线于,求.参考答案:解:(1)设双曲线方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光伏发电项目屋顶租赁合同
- 广西小学教学楼合同协议书
- 海外打工合同书
- 合同到期声明范本
- 2024年广州客运资格证应用能力试题及答案详解
- 2024对外建筑工程承包合同
- 2024家庭农场土地租赁合同
- 深圳大学《自然辩证法》2021-2022学年第一学期期末试卷
- 鱼肉购销合同(2篇)
- 种植松树协议书(2篇)
- 建设项目设计管理方案
- 2024年届海南航空控股股份有限公司招聘笔试参考题库含答案解析
- 前程无忧在线测试题库及答案行测
- 手术室突发事件的紧急处理与应急演练
- 《军事理论》课程标准
- 仓库货物条码管理培训
- 第六章-中国早期社会学中的社区学派-《中国社会学史》必备
- 太阳能发电技术在航天与航空领域的应用
- 大学生预防猝死知识讲座
- (2)反垄断法(字向东)
- 行政事业单位合同管理内部控制制度
评论
0/150
提交评论