山东省淄博市召口乡中学2022-2023学年高二数学文月考试题含解析_第1页
山东省淄博市召口乡中学2022-2023学年高二数学文月考试题含解析_第2页
山东省淄博市召口乡中学2022-2023学年高二数学文月考试题含解析_第3页
山东省淄博市召口乡中学2022-2023学年高二数学文月考试题含解析_第4页
山东省淄博市召口乡中学2022-2023学年高二数学文月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市召口乡中学2022-2023学年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=x3﹣12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是()A.﹣1≤m≤1 B.﹣1<m≤1 C.﹣1<m<1 D.﹣1≤m<1参考答案:D【考点】6A:函数的单调性与导数的关系.【分析】由函数f(x)=x3﹣12x在(2m,m+1)内单调递减转化成f′(x)≤0在(2m,m+1)内恒成立,得到关于m的关系式,即可求出m的范围.【解答】解:∵函数f(x)=x3﹣12x在(2m,m+1)上单调递减,∴f'(x)=3x2﹣12≤0在(2m,m+1)上恒成立.故亦即成立.解得﹣1≤m<1故答案为:D.2.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线其中真命题的个数是()A.1 B.2 C.3 D.4参考答案:C【考点】棱柱的结构特征.【分析】根据图对四个命题依次分析.【解答】解:由图知,BC1∥平面ACD1,直线BC1上的点到平面ACD1的距离不变;VA﹣D1PC=VP﹣AD1C;其底面面积与高都不变,则体积不变;①正确;由图知,P在直线BC1上运动时,直线AP与平面ACD1所成角的大小显然在变;②不正确;由图知,BC1∥平面ACD1,二面角P﹣AD1﹣C的大小恒等于平面ACD1与面BC1D1A所成的锐角,故不变,③正确;由图知,到点D和C1距离相等的点在平面A1D1C上,故M点的轨迹是过D1点的直线A1D1;故④正确.故选:C.3.下列四个命题中错误的是(

)A.若直线、互相平行,则直线、确定一个平面B.若四点不共面,则这四点中任意三点都不共线C.若两条直线没有公共点,则这两条直线是异面直线D.两条异面直线不可能垂直于同一个平面ks5u参考答案:C4.设集合M={1,2},N={a2},则“a=1”是“N?M”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件参考答案:A【考点】集合关系中的参数取值问题.【分析】先由a=1判断是否能推出“N?M”;再由“N?M”判断是否能推出“a=1”,利用充要条件的定义得到结论.【解答】解:当a=1时,M={1,2},N={1}有N?M当N?M时,a2=1或a2=2有所以“a=1”是“N?M”的充分不必要条件.故选A.5.双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PE2|,则双曲线离心率的取值范围为(

)A.(1,3)

B.

C.(3,+)

D.参考答案:B6.设函数在定义域内可导,的图象如图,则导函数的图象可能为

)参考答案:D7.对于曲线∶=1,给出下面四个命题:(1)曲线不可能表示椭圆;(2)若曲线表示焦点在x轴上的椭圆,则1<<;(3)若曲线表示双曲线,则<1或>4;(4)当1<<4时曲线表示椭圆,其中正确的是(

)A.(2)(3)

B.(1)(3)

C.(2)(4)

D.(3)(4)参考答案:A略8.袋中有10个大小相同但编号不同的球,6个红球和4个白球,无放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为(

)A. B. C. D.参考答案:D试题分析:先求出“第一次摸到红球”的概率为:,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是,再求“第一次摸到红球且第二次也摸到红球”的概率为,根据条件概率公式,得:,故选D.考点:条件概率与独立事件.【易错点晴】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解.利用定义,分别求和,得.注意:事件与事件有时是相互独立事件,有时不是相互独立事件,要弄清的求法.属于中档题,看准确事件之间的联系,正确运用公式,是解决本题的关键.9.设函数图象上一点及邻近一点,则(

).A.

B.

C.

D.

参考答案:C10.等差数列{an}中,已知a1=,a2+a5=4,=33,则n的值为(

).A.50 B.49 C.48 D.47参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为________.

参考答案:12.在平面直角坐标系中,已知的顶点和,若顶点在双曲线的左支上,则.参考答案:13.已知双曲线的左、右焦点分别为F1、F2,点P在双曲线上,且PF2⊥x轴,则F2到直线PF1的距离为.参考答案:略14.已知数列的前项和,求=_______。参考答案:略15.已知x与y之间的一组数据:x1234y1357则y与x的线性回归方程为必过点.参考答案:(2.5,2)【考点】线性回归方程.【专题】计算题;规律型;概率与统计.【分析】求出样本中心即可得到结果.【解答】解:由题意可知:==2.5.=2.y与x的线性回归方程为必过点(2.5,2).故答案为:(2.5,2).【点评】本题考查回归直线方程的应用,样本中心的求法,考查计算能力.16.一条光线经点处射向轴上一点B,又从B反射到直线

上的一点C,后又从C点反射回A点,求直线BC的方程。

参考答案:y=-3x+1略17.各项均不为零的等差数列中,则等于(

A.2009

B.4018

C.4024

D.1006参考答案:C略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设椭圆C:+=1(a>b>0)过点M(,),且离心率为,直线l过点P(3,0),且与椭圆C交于不同的A、B两点.(1)求椭圆C的方程;(2)求?的取值范围.参考答案:【考点】椭圆的简单性质.【分析】(1)由椭圆的离心率e===,则=①,将M(,),代入椭圆方程,即可求得椭圆的标准方程;(2)设其方程为:y=k(x﹣3),代入椭圆方程,由△>0,解得:k2<,=(x1﹣3,y1),=(x2﹣3,y2),则?=(x1﹣3)(x2﹣3)+y1y2=(k2+1)[x1x2﹣3(x1+x2)+9],由韦达定理可知,代入求得?=2+,由k的取值范围,即可求得?的取值范围.【解答】解:(1)由已知可得:由椭圆的离心率e===,则=①,由点M(,)在椭圆上,②,解得:a2=6,b2=4,∴椭圆C的方程为:;(2)①当直线l的斜率不存在时,l的方程为:x=3与椭圆无交点.故直线l的斜率存在,设其方程为:y=k(x﹣3),A(x1,y1),B(x2,y2),由,整理得:(3k2+2)x2﹣18k2x+27k2﹣12=0,∵△=(18k2)2﹣4(3k2+2)(27k2﹣12)>0,解得:k2<,x1+x2=,x1x2=,(6分)∵=(x1﹣3,y1),=(x2﹣3,y2)∴?=(x1﹣3)(x2﹣3)+y1y2=(x1﹣3)(x2﹣3)+k2(x1﹣3)(x2﹣3),=(k2+1)[x1x2﹣3(x1+x2)+9]=(k2+1)(﹣+9)==2+,(10分)∵0≤k2≤,∴<≤,∴<2+≤3,∴?∈(,3].(12分)【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查向量数量积的坐标运算,考查计算能力,属于中档题.19.一个口袋内装有大小相同的6个小球,其中2个红球,记为、,四个黑球记为、、、,从中一次摸出2个球。(1)写出所有的基本事件;(2)求摸出的两个球颜色不同的概率。参考答案:解:(Ⅰ)则从中一次摸出2个球,有如下基本事件:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)

共有15个基本事件

(Ⅱ)由(Ⅰ)知从袋中的6个球中任取2个,所取的2球颜色不同的方法有(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4)共有8种,

故所求事件的概率P=

20.记数列{an}的前n和为Sn,且满足以下规律:a1=12﹣22,a2=32﹣42,…,an=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出Sn的表达式,并用数学归纳法证明.参考答案:【考点】RG:数学归纳法.【分析】归纳Sn的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{an}的前n和为Sn,且满足以下规律:a1=12﹣22,a2=32﹣42,…,an=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…Sn=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即Sk=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即Sk+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.21.已知函数f(x)=(x+1)2﹣alnx.(Ⅰ)讨论函数的单调性;(Ⅱ)若函数f(x)在区间(0,+∞)内任取两个不相等的实数x1,x2,不等式恒成立,求a的取值范围.参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的定义域,导函数,①当a≤0时,②当a>0时,判断导函数的符号,推出函数的单调性.(Ⅱ)不妨令x1>x2,则x1+1>x2+1,x∈(0,+∞),则x+1∈(1,+∞),不等式,推出f(x1+1)﹣(x1+1)>f(x2+1)﹣(x2+1),设函数g(x)=f(x)﹣x,利用函数的导数利用函数的单调性与最值求解即可.【解答】(本小题满分12分)解:(Ⅰ)函数的定义域为x>0,,…(2分)①当a≤0时,f'(x)>0在x>0上恒成立,所以f(x)在(0,+∞)上单调递增.…(3分)②当a>0时,方程2x2+2x﹣a=0有一正根一负根,在(0,+∞)上的根为,所以函数f(x)在上单调递减,在上单调递增.综上,当a≤0时,函数f(x)在(0,+∞)上单调递增,当a>0时,函数f(x)在上单调递减,在上单调递增.…(6分)(Ⅱ)不妨令x1>x2,则x1+1>x2+1,x∈(0,+∞),则x+1∈(1,+∞),由f(x1+1)﹣f(x2+1)>(x1+1)﹣(x2+1)?f(x1+1)﹣(x1+1)>f(x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论