蓄电 技术评论_第1页
蓄电 技术评论_第2页
蓄电 技术评论_第3页
蓄电 技术评论_第4页
蓄电 技术评论_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ElectricityStorageTechnologyReview

Preparedfor

U.S.DepartmentofEnergyOfficeofFossilEnergy

June30,2020

ExecutiveSummary

ElectricityStorageTechnologyReview

PAGE\*roman

ii

Contents

ExecutiveSummary 1

Introduction 1

ProjectOverviewandMethodology 1

WorldwideElectricityStorageInstallations 2

TheIssueatHand:LargeMarketPenetrationofIntermittentElectricityGenerationCapacity 4

ServicesProvidedbyEnergyStorageSystems 5

IndirectBenefits:Grid-ConnectedServicesProvidedbyEnergyStorage 5

DirectBenefits:IntegratingEnergyStorageDirectlywithGeneration 6

OpportunitiesforFossilThermalIntegrationwithStorage 6

TechnologyReviews 8

StationaryBatteryEnergyStorage 9

Lithium-IonBES 9

RedoxFlowBES 14

OtherBES 19

MechanicalEnergyStorage 22

CompressedAirEnergyStorage(CAES) 22

PumpedStorageHydropower(PSH) 24

ThermalEnergyStorage 27

SuperCriticalCO2EnergyStorage(SC-CCES) 27

MoltenSalt 29

LiquidAir 31

ChemicalEnergyStorage 33

Hydrogen 34

Ammonia 38

Methanol 40

ConclusionsandRecommendations 43

Bibliography 49

TableofFigures

Figure1.ComparativeMatrixwithPreliminaryAssessmentofEnergyStorageTechnologies 2

Figure2.WorldwideElectricityStorageOperatingCapacitybyTechnologyandbyCountry,2020 2

Figure3.WorldwideStorageCapacityAdditions,2010to2020 3

Figure4.IllustrativeExampleoftheImpactofPVDeploymentonGeneratorDispatch 4

Figure5.OverviewofRangeofServicesThatCanBeProvidedbyEnergyStorageSystems 5

Figure6.Co-LocatingVs.StandaloneEnergyStorageatFossilThermalPowerplantsCanProvideNetBenefitsDependingonAncillaryElectricMarketStructure 7

Figure7.IllustrativeConfigurationofaStationaryLithium-IonBES 9

Figure8.SummaryOperatingCharacteristicsofLithium-IonBES 11

Figure9.ExampleLithium-IonBESCostProjectionsIllustratingCapacityandEnergyConsiderations,

$/kW 13

Figure10.EvolutionofElectricVehicleBESCostProjectionsIllustratetheEffectsofOngoingTechnologicalChange,$/kWh 13

Figure11.ExampleConfigurationofaVanadiumRedox-FlowBES 14

Figure12.SummaryOperatingCharacteristicsofFlowBES 15

Figure13.CompaniesActiveinFlowBESCommercializationEfforts 16

Figure14IllustrativeCostProjectionsforFlowBESatDifferentHourRatings,$/kW 18

Figure15.U.S.Large-ScaleBESPowerCapacityandEnergyCapacitybyChemistry,2003-2017 19

Figure16.IllustrativeComparativeCostsforDifferentBESTechnologiesbyMajorComponent 21

Figure17.DiagramofACompressedAirEnergyStorageSystem 22

Figure18.DiagramofAPumpedStorageHydropowerStation 24

Figure19.DiagramofSuperCriticalCO2EnergyStorageSystem 27

Figure20.MoltenSaltEnergyStoragePrincipleofOperation 29

Figure21.IllustrativeIntegrationofThermalEnergyStorageintoPowerplant 29

Figure22.LiquidAirPowerCycle 31

Figure23.“Universal”BlockFlowDiagramIllustratingaMultitudeofOpportunitiesforFossilThermalPowerplantSystemstobeIntegratedwithChemicalEnergyStorage 33

Figure24.EfficienciesofFuelCellsatDifferentChemistriesandTemperatures 35

Figure25.ComparativeAssessmentofEnergyStorageTechnologies 43

Figure26.HourlyCoalPowerplantEfficiencybyLoadLevelforaRepresentativeRegionin2013-201545Figure27.FossilThermalPowerplantCharacteristics 46

Figure28.“GettingItRight”inEconomicUnitCommitmentandDispatchisKey 47

Figure29.ModelingIssues 48

NoteabouttheReview:

TheReviewisintendedtoprovideabriefingregardingarangeofenergystoragetechnologiesthatincludesadetailedlistingofprimarysources.Forthatreason,Microsoft®Word,ratherthanPowerPoint,wasusedforproducingtheReview.

ExecutiveSummary

ElectricityStorageTechnologyReview

PAGE

1

ExecutiveSummary

Objective:

Theobjectiveistoidentifyanddescribethesalientcharacteristicsofarangeofenergy

storagetechnologiesthatcurrentlyare,orcouldbe,undergoingR&Dthatcoulddirectlyorindirectlybenefitfossilthermalenergypowersystems.

Theusesforthisworkinclude:

InformDOE-FEofrangeoftechnologiesandpotentialR&D.

PerforminitialstepsforscopingtheworkrequiredtoanalyzeandmodelthebenefitsthatcouldarisefromenergystorageR&Danddeployment.

TechnologyBenefits:

Therearepotentiallytwomajorcategoriesofbenefitsfromenergystoragetechnologies

forfossilthermalenergypowersystems,directandindirect.

Grid-connectedenergystorageprovidesindirectbenefitsthroughregionalloadshaping,therebyimprovingwholesalepowerpricing,increasingfossilthermalgenerationandutilization,reducingcycling,andimprovingplantefficiency.

Co-locatedenergystoragehasthepotentialtoprovidedirectbenefitsarisingfromintegratingthattechnologywithoneormoreaspectsoffossilthermalpowersystemstoimproveplanteconomics,reducecycling,andminimizeoverallsystemcosts.

PreliminaryFindings:

Energystoragetechnologieswiththemostpotentialtoprovidesignificantbenefitswith

additionalR&Danddemonstrationinclude:

LiquidAir:

Thistechnologyutilizesproventechnology,

Hastheabilitytointegratewiththermalplantsthroughtheuseofsteam-drivencompressorsandheatintegration,and

Limitsstoredmediarequirements.

Ofthetwomostpromisingtechnologies,thisistheonemostreadyforimmediatedeployment.

AmmoniaProductionwithCrackingandaHydrogenFuelCell:

Forthermalintegration,thistechnologyisveryclosetoimmediatedeployment,

Eliminatestheneedforcostlycryo-storageofhydrogen,and

Itofferstheopportunityforheatintegrationandtechnologyadoptionashydrogenelectrolysisandfuelcelltechnologyisadvanced.

Figure1.ComparativeMatrixwithPreliminaryAssessmentofEnergyStorageTechnologies

Benefits

Technology

Maturity(Experience)

Durability/

Reliability(Degradation)

Duration

Capacity(hours)

Dispatch

Capacity(MW)

ResponseTime

RelativeCost

FossilThemal

Integration(Opportunity)

Better()

High

Limited

High

High

Faster

Low

High

Worse()

Limited

High

Low

Low

Slower

High

Limited

StationaryBatteryEnergyStorage

Li-IonBES

RedoxFlowBES

MechanicalEnergyStorage

CompressedAir

niche1

PumpedHydro

niche1

ThermalEnergyStorage

SC-CCES

MoltenSalt2

LiquidAir

ChemicalEnergyStorage3

Hydrogen(H2)

4

5

Ammonia(NH3)

4

Methanol(MeOH)

Source:OnLocation

Notes:

CompressedAirandPumpedHydroutilizespecificgeologicalformationswhicharenotreadilyavailabletoallfacilitylocations.

MoltenSaltisexpandedtoincludeseveralthermalstoragemediaasthecomplexityofahigh-temperaturefluid,asopposedtoastationary/solidmedia,appearstoholdlittleadditionalbenefitforfossilthermalapplication.

ChemicalEnergyStorageconsistsofseveraldifferentoptions,asdescribedinthereport.

Whileconventionalhydrogenandammoniaproductionprocessesaremature,thisreportconsidersnewertechnologiesthataremoredirectlyapplicabletofossilthermalintegration.

Conventionalhydrogenstorageisrelativelymature,howevergeologicstorageisbeingexploredandissimilartoCompressedAirstorageintechnologymaturity.

Otherpromisingtechnologiesinclude:

SuperCriticalCO2EnergyStorage(SC-CCES)

MethanolwithHydrogenFuelCell

SpecificenablingtechnologiesthatmaybenefitfromadditionalR&Dinclude:

Electrolysis(generally),

DirectMethanolFuelCell(DMFC),and

High-TemperatureSteamElectrolysis(HTSE)thatcouples800°Csteamwithsolid-oxideelectrolysistoreducetheelectricityrequirement

Energystoragetechnologiesthatarelargelymaturebutappeartohaveanichemarket,

limitedapplication,orR&Dupsideinclude:

Pumpedhydrostorage

CompressedAirEnergyStorage(CAES)

EnergystoragetechnologiesareundergoingadvancementduetosignificantinvestmentsinR&Dandcommercialapplications.

Thereexistanumberofcostcomparisonsourcesforenergystoragetechnologies

Forexample,workperformedforPacificNorthwestNationalLaboratoryprovidescostandperformancecharacteristicsforseveraldifferentbatteryenergystorage(BES)technologies(Mongirdetal.2019).

Recommendations:

Performanalysisofhistoricalfossilthermalpowerplantdispatchtoidentifyconditions

forlowereddispatchthatmaybenefitfromelectricitystorage.

Improvetechno-economicmodelingtoolstobetteraccountforthedifferentfossil

thermalpowerplantsandtheircharacteristicsandexpandtheirstoragetechnologyrepresentationstoallowforquantitativelyevaluatingthebenefitsofenergystoragebasedongridandintegrationbenefits.

Buildonthisworktodevelopspecifictechnologyparametersthatare“benched”toone

ormoreestimatesforperformanceandcost,suchasU.S.EnergyInformationAdministration(EIA),PacificNorthwestNationalLaboratory(PNNL),andothersourcesofcostestimates,thatcouldbeusedinmodelingandanalysis.

Introduction

ElectricityStorageTechnologyReview

PAGE

1

Introduction

ProjectOverviewandMethodology

Theobjectiveofthisworkistoidentifyanddescribethesalientcharacteristicsofarangeofenergystoragetechnologiesthatcurrentlyare,orcouldbe,undergoingresearchanddevelopmentthatcoulddirectlyorindirectlybenefitfossilthermalenergypowersystems.

Theresearchinvolvesthereview,scoping,andpreliminaryassessmentofenergystoragetechnologiesthatcouldcomplementtheoperationalcharacteristicsandparameterstoimprovefossilthermalplanteconomics,reducecycling,andminimizeoverallsystemcosts.

Thereportprovidesasurveyofpotentialenergystoragetechnologiestoformthebasisforevaluatingpotentialfuturepathsthroughwhichenergystoragetechnologiescanimprovetheutilizationoffossilfuelsandotherthermalenergysystems.

Theworkconsistedofthreemajorsteps:

Aliteraturesearchwasconductedforthefollowingtechnologies,focusingonthemostup-to-dateinformationsourcesavailable:

Stationarybatteryenergystorage(BES)

Lithium-ionBES

RedoxFlowBES

OtherBESTechnologies

MechanicalEnergyStorage

CompressedAirEnergyStorage(CAES)

PumpedStorageHydro(PSH)

ThermalEnergyStorage

SuperCriticalCO2EnergyStorage(SC-CCES)

MoltenSalt

LiquidAirStorage

ChemicalEnergyStorage

Hydrogen

Ammonia

Methanol

Eachtechnologywasevaluated,focusingonthefollowingaspects:

Keycomponentsandoperatingcharacteristics

Keybenefitsandlimitationsofthetechnology

Currentresearchbeingperformed

Currentandprojectedcostandperformance

Researchandcommercializationstatusofthetechnology

Acomparativeassessmentwasmadeofthetechnologiesfocusingontheirpotentialforfossilthermalpowerplantintegrationinthenearterm(i.e.,commerciallyavailable)aswellasinthelongerterm(i.e.,opportunitiesforadditionalresearch,demonstrationanddevelopment).

WorldwideElectricityStorageInstallations

Figure2.WorldwideElectricityStorageOperatingCapacitybyTechnologyandbyCountry,2020

Source:DOEGlobalEnergyStorageDatabase(Sandia2020),asofFebruary2020.

Worldwideelectricitystorageoperatingcapacitytotals159,000MW,orabout6,400MWifpumpedhydrostorageisexcluded.TheDOEdataiscurrentasofFebruary2020(Sandia2020).

Pumpedhydromakesup152GWor96%ofworldwideenergystoragecapacityoperatingtoday.

Oftheremaining4%ofcapacity,thelargesttechnologysharesaremoltensalt(33%)andlithium-ionbatteries(25%).FlywheelsandCompressedAirEnergyStoragealsomakeupalargepartofthemarket.

Thelargestcountryshareofcapacity(excludingpumpedhydro)isintheUnitedStates(33%),followedbySpainandGermany.TheUnitedKingdomandSouthAfricaroundoutthetopfivecountries.

Figure3.WorldwideStorageCapacityAdditions,2010to2020

Source:DOEGlobalEnergyStorageDatabase(Sandia2020),asofFebruary2020.

Excludingpumpedhydro,storagecapacityadditionsinthelasttenyearshavebeendominatedbymoltensaltstorage(pairedwithsolarthermalpowerplants)andlithium-ionbatteries.

AbouthalfofthemoltensaltcapacityhasbeenbuiltinSpain,andabouthalfoftheLi-

ionbatteryinstallationsareintheUnitedStates.

Redoxflowbatteriesandcompressedairstoragetechnologieshavegainedmarketshareinthelastcoupleofyears.Themostrecentinstallationsandexpectedadditionsinclude:

A200MWVanadiumRedoxFlowBatterycameonlinein2018inDalian,China.

A300MWcompressedairfacilityisbeingbuiltbyPG&EinCalifornia–estimatedonline

dateis2020.

TheIssueatHand:LargeMarketPenetrationofIntermittentElectricityGenerationCapacity

Figure4.IllustrativeExampleoftheImpactofPVDeploymentonGeneratorDispatch

Source:OnLocationusingresultsfromtheNEMSREStoreModel

Recentandprojectedfutureelectricitygeneratingcapacityisexpectedtobeincreasinglynon-dispatchablerenewable,especiallysolarPV,leadingtosqueezingofothergeneratingsources.

Inaddition,mostfossilthermalpowerplantslackthecapabilitytoquicklyrampdowngenerationwhenthesunrisesandrampupwhenthesunsetsbecauseofthermalcyclinglimitations.

Therepresentative24-hourloadprofileshowninFigure4wascreatedusingresultsoftheEIANEMSREStoremodel1.ThisprofileillustratessomeofthechallengesfacingfossilthermalplantdispatchinregionswithlargedeploymentofPV’sonthegrid.

AssolarPVgeneration(shownastheredbarsinthechart)rampsupduringthemid-day

hours,coalgeneration(pinkbars)issqueezedoutofthegenerationmix.

Likewise,asPVgenerationrampsdowninthelateafternoonhours,coalgenerationlevelsaregraduallyrestoredtobaseloadlevels.

Solargenerationthatexceedsthesystemloadrequirement(blueline)iscapturedand

storedbythesystem’sstoragecapacityandisthendischarged(brownbars)duringtheshoulderhourswhensolargenerationisnotavailable.

Fossilthermalplantsthathaveonsitestoragecapabilitycouldstoreexcessgenerationinthemid-dayhourstoreducetheneedtorampdownduringthosehours.Thestoredelectricitycouldthenbedischargedduringhourswhensolarisnolongeravailable,especiallyinregionswithpeakhoursthatoccurlaterintheday.Thiswouldincreasethetotalgenerationand

efficiencyofthefossilplant,therebyreducingtheneedtocycleanditsassociatedcosts.

1FormoreinformationabouttheEIANEMSREStoremodel,seeEIA“AssumptionstotheAnnualEnergyOutlook2020:ElectricityMarketModule,”https://

/outlooks/aeo/assumptions/pdf/electricity.pdf.

ServicesProvidedbyEnergyStorageSystems

Energystoragesystemscanprovideindirectanddirectbenefitstofossilthermalpowerplants.

IndirectBenefits:Grid-ConnectedServicesProvidedbyEnergyStorage

Figure5.OverviewofRangeofServicesThatCanBeProvidedbyEnergyStorageSystems

Source:(InternationalRenewableEnergyAgency2017)

Electricitystoragesystemscanprovideawiderangeofservicestogenerators,utilities,andcustomerswhenconnectedtoapowergrid:

Generationorbulkenergyservices

Energytime-shifting/generationarbitrageinvolvesgeneratingorpurchasingelectricity

attimeswhenelectricityratesarelowandstoringthatelectricityforsalelaterwhenratesarehightoreducecostsand/ormaximizerevenues.

Electricsupplycapacityandpeakdemandmanagementprovidessupportattimesof

peakdemandbystoringelectricityatoff-peakhoursanddischargingwhendemandishighest.Thisallowsutilitiestodeferoreliminatetheneedforbuildingadditionalpeakingcapacitysuchascombustionturbines.

Capacityfirming/smoothingallowsgeneratorstomaximizetheavailabilityoftheir

generation.

Forbaseloadplants,storagesystemscanstoreelectricityduringperiodsoflowdemand(orhighnon-dispatchablegenerationsuchassolarPV)whenbaseloadplantswouldnormallyrampdowntheirgeneration,allowingtheseplantstooperateatahigherlevel.Similarly,duringperiodsofhighdemandwhenplantsneedtorampupgeneration,storedelectricitycanbereleasedtoreducethedemandforcycling.Alsoknownasloadfollowing,energystoragecanresultislesscycling,whichcanreduceoperatingcosts,increaseplantefficiency,andextendplantlifetime.

Forrenewableplants,storagesystemscanbeusedtocapturesolarandwindgenerationthatmayexceeddemandduringcertainhoursoftheday,thusreducingtheneedtocurtailgeneration.Thestoredelectricitycanthenbedischargedduringthe“shoulder”hourstosmoothoutgeneration,especiallyforsolargenerationthatrampsupquicklyasthesunrisesandrampsdownquicklyasthesunsets,puttingastrainontheelectricsystem.

Gridservices

AncillaryServicesprovidethenecessarysupportforthetransmissionofelectricpower

fromsellertopurchasertomaintainreliableoperationsoftheinterconnectedtransmissionsystem.Examplesincludefrequencyregulation,voltagecontrol,blackstartsupport,andspinning,non-spinningandsupplementalreserves.

Transmissionanddistributionupgradescanbedeferredtoreducesystemcosts

Transmissioncongestioncanberelievedbyplacingstoragesystemsinstrategic

locationsalongcongestedtransmissionlines.Thisreducescongestionchargesandthepotentialforsupplydisruptions.

Behindthemeter

Storagesystemscanbeusedbycustomerstoprovidebackuppowerforreliability,

demandshiftingtoreduceelectricitybills,anddemandchargemanagementtoreducetheiraveragepeakloadanddemandcharges(Hewettetal.2016).

Storagetechnologieshavedifferentattributesthatmakethemmoresuitableforonetypeofserviceoveranother.Attributessuchasstoragecapacityandduration,responsetime,round-tripefficiency,cost,andexpectedlifetimeplayaroleindeterminingthebestapplicationforeachtechnology.

DirectBenefits:IntegratingEnergyStorageDirectlywithGeneration

Integratingenergystoragedirectlywithgeneration,alsoknownas“hybridenergystorage,”arepowerplantswithon-sitestorage.

Manysolarplantshavechosentobuildon-sitestorage,includingPVplantspairedwithbatteriesandsolarthermalplantspairedwiththermalstoragesuchasmoltensalt.

NRELestimatesthatco-locatingLi-Ionbatteryenergystorage(BES)withaPVsystemwouldsaveupto8%incapitalcosts(Fu,Remo,andMargolis2018)duetosavingsarisingfrom:

Siteacquisition,preparation,andpermitting,

Sharedswitchgear,transformer,andcontrolequipment,

Installationlabor,overheadandprofit.

OpportunitiesforFossilThermalIntegrationwithStorage

Thermalstoragetechnologiesareabletostorewasteheatproducedbythefossilpowerplantanduseittodriveaturbineandsupplementthefossilplant’sgenerationduringpeakhours.

Chemicalstoragetechnologiescanusethewasteheatforchemicalprocessessuchashigh-temperatureelectrolysisandammoniacracking.

Batterytechnologiescanstoreexcesselectricityproducedbythefossilpowerplanttomaximizegenerationduringpeakandoff-peakhours.

Otherbenefitsfromfossil/storageintegrationinclude:

Sharedinfrastructuresuchastransformersandtransmissionlines,thusreducingthe

investmentrequiredforinstallation.

Reducedthermalgeneratorcyclingreduceswearandtearontheequipmentandimprovestheplant’sheatrate.

Storagetechnologiescanprovideancillaryservicesthatcannotbemetbyfossilthermal

technologies,providinganadditionalsourceofrevenue.

Figure6.Co-LocatingVs.StandaloneEnergyStorageatFossilThermalPowerplantsCanProvideNetBenefitsDependingonAncillaryElectricMarketStructure

Source:(Sejatietal.2019)

Co-locatingenergystoragewithneworexistingfossilplantscanalsosavemoneyandincreasethevalueofthefossilplantthroughthesamebenefitsasdescribedabove.Inaddition,benefitscanarisefrom:

Greaterutilizationofenergythatmayotherwisebecurtailedduringperiodsoflow

demandandutilizethatunit’selectricityorsteamoutputtoproduceanalternative,marketable,product.

Reducedwearandtearfromthermalgeneratorcycling(Gormanetal.2020).

Improvedheatrateduetolesscycling,asdepictedabove.

Betterreturnsoninstalledcapacityifelectricpowermarketsarenotadequately

compensatingfossilthermalpowerplantsfortheircontributiontotheelectricgrid.

TechnologyReviews

ElectricityStorageTechnologyReview

PAGE

8

TechnologyReviews

Thissectionreviewstheliteratureonenergystoragetechnologiesandsummarizeseachasfollows:

TechnologyDescription

TechnologyBenefitsandLimitations

TechnologyStatusincludingresearchopportunities

TechnologyCostProjections

Inperformingtheworkitwasfoundthatthetechnologiescanbeorganizedbycategory,asfollows:

StationaryBatteryEnergyStorage

MechanicalEnergyStorage

ThermalEnergyStorage

ChemicalEnergyStorage

TechnologyReviews

StationaryBatteryEnergyStorage–Lithium-IonBES

ElectricityStorageTechnologyReview

PAGE

10

StationaryBatteryEnergyStorage

Lithium-IonBES

TechnologyDescription

Figure7.IllustrativeConfigurationofaStationaryLithium-IonBES

LithiumIonBattery

Cathode

Li+

Li+

discharge

Li+

Li+

Li+

Li+

Li+

charge

Anode

DirectCurrent

PowerConversionSystem(PCS)

DCACDCAC

Grid

Li+

Li+

Electrolyte(medium)

Separator

Source:OnLocation

AstationaryBatteryEnergyStorage(BES)facilityconsistsofthebatteryitself,aPowerConversionSystem(PCS)toconvertalternatingcurrent(AC)todirectcurrent(DC),asnecessary,andthe“balanceofplant”(BOP,notpictured)necessarytosupportandoperatethesystem.

Thelithium-ionBESdepictedinError!Referencesourcenotfound.illustratesthecathodeandanodeindischargemode(duringchargingtheelectrodesarereversed):

Charging:Powerisappliedtothebatterybyprovidingahighervoltageatthepositive

electrode,whichinduceslithiumionstobedisplacedfromthatelectrodethatthentransportthroughtheelectrolyte,throughtheseparator,andarethencollectedwithinthenegativeelectrode.

Discharging:Powerisextractedthroughreversingtheprocessbyapplyingaloadonthe

battery.

Thedischarge/chargecycleleadstothesebatteriesbeingreferredtoas“rockingchairbatteries.”

Thebatteryisaself-containedstoragedevicethatissizedinawaythatconsiders:

Dischargehours(MWh),

Maximumrequiredoutput(MW),and

Designlifeofthebattery(numberofcycles),whichisafunctionofbatterychemistry,

expectedutilization,andageofthebattery.

ThePCSscaleswiththemaximumratedBESoutputcapacity,measuredinkW.

Thefirstbatterieswereusedforconsumerelectronicssuchascellularphonesbuttheyhavenowbeenscaledforuseinelectricvehiclesandlarge-scalegridstorageapplications.

Li-ionbatterycellsconsistofagraphiteanode,metal-oxidecathode,andalithiumsaltelectrolytegel.Forstationarystorageapplications,thesecomponentsarepackagedinapouchorotherconfiguration.Batterycellsareintegratedintobatterymodules,whichareinstalledinstandard19-inch-wideracksinabuildingorspecializedcontainertocreateanintegratedbatterysystem(Aquinoetal.2017).

Theterm“lithium-ion”referstoavarietyofdifferentchemistries,allofwhichoperatebytransferringlithiumionsbetweentheelectrodesduringthechargeanddischargereactions.Lithium-ioncellsdonotcontainmetalliclithium;instead,theionsareinsertedintoothermaterialssuchaslithiatedmetaloxidesorphosphatesinthepositiveelectrode(cathode)andcarbon(suchasgraphite)orlithiumtitanateinthenegativeelectrode(anode)(EnergyStorageAssociation,n.d.).

Theprimarychemistriesinusetodayare:

Lithiumnickelmanganesecobaltoxide(NMC)

Lithiummanganeseoxide(LMO)

Lithiumironphosphate(LFP)

Lithiumtitanate(LTO)

NMCarethemostpopularchemistriesingrid-scalestoragesystemsbecausetheydemonstratebalancedperformancecharacteristicsintermsofenergy,power,cost,andcyclelife.

Li-ionbatteriesarehighlysensitivetotemperature.Thebuildingorcontainerhousingthebatterysystemtypicallyincludesanactivecoolingsystemtoensurethebatteriesstaywithinanoptimaltemperaturerangeofaround70°F(Aquinoetal.2017).

TechnologyBenefitsandLimitations

Figure8.SummaryOperatingCharacteristicsofLithium-IonBES

Source:(Kimetal.2018)

Benefits:

LowCost:Lithium-ionbatterycostshavedeclineddramaticallyinrecentyears,asmuchas80%between2010and2017(DeloitteCenterforEnergySolutions2018).Thisdeclineisdueinparttosynergieswiththescaleofmanufacturingandresearchinotheruses,includinginelectricvehiclesandelectronics.

Operatingcharacteristics:

Veryfastresponserates(afractionofasecond)makingthemgoodcandidatesforgrid

balancingservices

Flexiblesizesandshortconstructiontimes.Forexample,“In2017,Teslabuilta

100MW/130MWhcontainerizedlithium-ionstoragesysteminAustraliawithinjustthreemonths.”(Kairies,Figgener,andHaberschusz2019).

Highlyefficient,generallyrangingfrom85%to95%efficiency(Zablocki2019).

Dischargetimesof1secondtoupto8hours

Comparedtootherbatteryoptions,lithium-ionbatterieshavehighenergydensityand

arelightweight.

Regulatoryincentives:

BatteryinstallationsaregrowingrapidlyinthemanyU.S.statesthathavestoragegoals,

mandates,andincentives.AccordingtotheU.S.EIAAnnualEnergyOutlook2020,statemandatesalonetotalmorethan6,500MWby2030.

Almosteverynationischangingitswholesalemarketrulestoallowbatteriesto

competeforcapacityandancillaryservices,suchasfrequencyregulationandvoltagecontrol(DeloitteCenterforEnergySolutions2018).

Limitations:

“Duetothetemperaturesensitivity,firehazard,andspecialshippingrequirements,manystatesclassifystationaryLi-ionsystemsashazardousmaterials.”(Aquinoetal.2017)

Reportsofpoliticalunrestandhumanrightsabuses,includingchildlabor,relatedtocobaltminingintheDemocraticRepublicofCongowhichaccountsforroughly60percentofglobalproductionofcobalt(e.g.,Barrera2020).

Environmentalaspectsrelatedtoveryexpensiverecyclingofthemanyhazardoussubstances(cobalt,nickel,organicelectrolytes)(Noacketal.2019).

Poorscalabilityforhighenergy(longduration)applications

Notalllithiumbatterychemistriesusecobalt.TeslaannouncedinFebruary2020th

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论