版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ElectricityStorageTechnologyReview
Preparedfor
U.S.DepartmentofEnergyOfficeofFossilEnergy
June30,2020
ExecutiveSummary
ElectricityStorageTechnologyReview
PAGE\*roman
ii
Contents
ExecutiveSummary 1
Introduction 1
ProjectOverviewandMethodology 1
WorldwideElectricityStorageInstallations 2
TheIssueatHand:LargeMarketPenetrationofIntermittentElectricityGenerationCapacity 4
ServicesProvidedbyEnergyStorageSystems 5
IndirectBenefits:Grid-ConnectedServicesProvidedbyEnergyStorage 5
DirectBenefits:IntegratingEnergyStorageDirectlywithGeneration 6
OpportunitiesforFossilThermalIntegrationwithStorage 6
TechnologyReviews 8
StationaryBatteryEnergyStorage 9
Lithium-IonBES 9
RedoxFlowBES 14
OtherBES 19
MechanicalEnergyStorage 22
CompressedAirEnergyStorage(CAES) 22
PumpedStorageHydropower(PSH) 24
ThermalEnergyStorage 27
SuperCriticalCO2EnergyStorage(SC-CCES) 27
MoltenSalt 29
LiquidAir 31
ChemicalEnergyStorage 33
Hydrogen 34
Ammonia 38
Methanol 40
ConclusionsandRecommendations 43
Bibliography 49
TableofFigures
Figure1.ComparativeMatrixwithPreliminaryAssessmentofEnergyStorageTechnologies 2
Figure2.WorldwideElectricityStorageOperatingCapacitybyTechnologyandbyCountry,2020 2
Figure3.WorldwideStorageCapacityAdditions,2010to2020 3
Figure4.IllustrativeExampleoftheImpactofPVDeploymentonGeneratorDispatch 4
Figure5.OverviewofRangeofServicesThatCanBeProvidedbyEnergyStorageSystems 5
Figure6.Co-LocatingVs.StandaloneEnergyStorageatFossilThermalPowerplantsCanProvideNetBenefitsDependingonAncillaryElectricMarketStructure 7
Figure7.IllustrativeConfigurationofaStationaryLithium-IonBES 9
Figure8.SummaryOperatingCharacteristicsofLithium-IonBES 11
Figure9.ExampleLithium-IonBESCostProjectionsIllustratingCapacityandEnergyConsiderations,
$/kW 13
Figure10.EvolutionofElectricVehicleBESCostProjectionsIllustratetheEffectsofOngoingTechnologicalChange,$/kWh 13
Figure11.ExampleConfigurationofaVanadiumRedox-FlowBES 14
Figure12.SummaryOperatingCharacteristicsofFlowBES 15
Figure13.CompaniesActiveinFlowBESCommercializationEfforts 16
Figure14IllustrativeCostProjectionsforFlowBESatDifferentHourRatings,$/kW 18
Figure15.U.S.Large-ScaleBESPowerCapacityandEnergyCapacitybyChemistry,2003-2017 19
Figure16.IllustrativeComparativeCostsforDifferentBESTechnologiesbyMajorComponent 21
Figure17.DiagramofACompressedAirEnergyStorageSystem 22
Figure18.DiagramofAPumpedStorageHydropowerStation 24
Figure19.DiagramofSuperCriticalCO2EnergyStorageSystem 27
Figure20.MoltenSaltEnergyStoragePrincipleofOperation 29
Figure21.IllustrativeIntegrationofThermalEnergyStorageintoPowerplant 29
Figure22.LiquidAirPowerCycle 31
Figure23.“Universal”BlockFlowDiagramIllustratingaMultitudeofOpportunitiesforFossilThermalPowerplantSystemstobeIntegratedwithChemicalEnergyStorage 33
Figure24.EfficienciesofFuelCellsatDifferentChemistriesandTemperatures 35
Figure25.ComparativeAssessmentofEnergyStorageTechnologies 43
Figure26.HourlyCoalPowerplantEfficiencybyLoadLevelforaRepresentativeRegionin2013-201545Figure27.FossilThermalPowerplantCharacteristics 46
Figure28.“GettingItRight”inEconomicUnitCommitmentandDispatchisKey 47
Figure29.ModelingIssues 48
NoteabouttheReview:
TheReviewisintendedtoprovideabriefingregardingarangeofenergystoragetechnologiesthatincludesadetailedlistingofprimarysources.Forthatreason,Microsoft®Word,ratherthanPowerPoint,wasusedforproducingtheReview.
ExecutiveSummary
ElectricityStorageTechnologyReview
PAGE
1
ExecutiveSummary
Objective:
Theobjectiveistoidentifyanddescribethesalientcharacteristicsofarangeofenergy
storagetechnologiesthatcurrentlyare,orcouldbe,undergoingR&Dthatcoulddirectlyorindirectlybenefitfossilthermalenergypowersystems.
Theusesforthisworkinclude:
InformDOE-FEofrangeoftechnologiesandpotentialR&D.
PerforminitialstepsforscopingtheworkrequiredtoanalyzeandmodelthebenefitsthatcouldarisefromenergystorageR&Danddeployment.
TechnologyBenefits:
Therearepotentiallytwomajorcategoriesofbenefitsfromenergystoragetechnologies
forfossilthermalenergypowersystems,directandindirect.
Grid-connectedenergystorageprovidesindirectbenefitsthroughregionalloadshaping,therebyimprovingwholesalepowerpricing,increasingfossilthermalgenerationandutilization,reducingcycling,andimprovingplantefficiency.
Co-locatedenergystoragehasthepotentialtoprovidedirectbenefitsarisingfromintegratingthattechnologywithoneormoreaspectsoffossilthermalpowersystemstoimproveplanteconomics,reducecycling,andminimizeoverallsystemcosts.
PreliminaryFindings:
Energystoragetechnologieswiththemostpotentialtoprovidesignificantbenefitswith
additionalR&Danddemonstrationinclude:
LiquidAir:
Thistechnologyutilizesproventechnology,
Hastheabilitytointegratewiththermalplantsthroughtheuseofsteam-drivencompressorsandheatintegration,and
Limitsstoredmediarequirements.
Ofthetwomostpromisingtechnologies,thisistheonemostreadyforimmediatedeployment.
AmmoniaProductionwithCrackingandaHydrogenFuelCell:
Forthermalintegration,thistechnologyisveryclosetoimmediatedeployment,
Eliminatestheneedforcostlycryo-storageofhydrogen,and
Itofferstheopportunityforheatintegrationandtechnologyadoptionashydrogenelectrolysisandfuelcelltechnologyisadvanced.
Figure1.ComparativeMatrixwithPreliminaryAssessmentofEnergyStorageTechnologies
Benefits
Technology
Maturity(Experience)
Durability/
Reliability(Degradation)
Duration
Capacity(hours)
Dispatch
Capacity(MW)
ResponseTime
RelativeCost
FossilThemal
Integration(Opportunity)
Better()
High
Limited
High
High
Faster
Low
High
Worse()
Limited
High
Low
Low
Slower
High
Limited
StationaryBatteryEnergyStorage
Li-IonBES
RedoxFlowBES
MechanicalEnergyStorage
CompressedAir
niche1
PumpedHydro
niche1
ThermalEnergyStorage
SC-CCES
MoltenSalt2
LiquidAir
ChemicalEnergyStorage3
Hydrogen(H2)
4
5
Ammonia(NH3)
4
Methanol(MeOH)
Source:OnLocation
Notes:
CompressedAirandPumpedHydroutilizespecificgeologicalformationswhicharenotreadilyavailabletoallfacilitylocations.
MoltenSaltisexpandedtoincludeseveralthermalstoragemediaasthecomplexityofahigh-temperaturefluid,asopposedtoastationary/solidmedia,appearstoholdlittleadditionalbenefitforfossilthermalapplication.
ChemicalEnergyStorageconsistsofseveraldifferentoptions,asdescribedinthereport.
Whileconventionalhydrogenandammoniaproductionprocessesaremature,thisreportconsidersnewertechnologiesthataremoredirectlyapplicabletofossilthermalintegration.
Conventionalhydrogenstorageisrelativelymature,howevergeologicstorageisbeingexploredandissimilartoCompressedAirstorageintechnologymaturity.
Otherpromisingtechnologiesinclude:
SuperCriticalCO2EnergyStorage(SC-CCES)
MethanolwithHydrogenFuelCell
SpecificenablingtechnologiesthatmaybenefitfromadditionalR&Dinclude:
Electrolysis(generally),
DirectMethanolFuelCell(DMFC),and
High-TemperatureSteamElectrolysis(HTSE)thatcouples800°Csteamwithsolid-oxideelectrolysistoreducetheelectricityrequirement
Energystoragetechnologiesthatarelargelymaturebutappeartohaveanichemarket,
limitedapplication,orR&Dupsideinclude:
Pumpedhydrostorage
CompressedAirEnergyStorage(CAES)
EnergystoragetechnologiesareundergoingadvancementduetosignificantinvestmentsinR&Dandcommercialapplications.
Thereexistanumberofcostcomparisonsourcesforenergystoragetechnologies
Forexample,workperformedforPacificNorthwestNationalLaboratoryprovidescostandperformancecharacteristicsforseveraldifferentbatteryenergystorage(BES)technologies(Mongirdetal.2019).
Recommendations:
Performanalysisofhistoricalfossilthermalpowerplantdispatchtoidentifyconditions
forlowereddispatchthatmaybenefitfromelectricitystorage.
Improvetechno-economicmodelingtoolstobetteraccountforthedifferentfossil
thermalpowerplantsandtheircharacteristicsandexpandtheirstoragetechnologyrepresentationstoallowforquantitativelyevaluatingthebenefitsofenergystoragebasedongridandintegrationbenefits.
Buildonthisworktodevelopspecifictechnologyparametersthatare“benched”toone
ormoreestimatesforperformanceandcost,suchasU.S.EnergyInformationAdministration(EIA),PacificNorthwestNationalLaboratory(PNNL),andothersourcesofcostestimates,thatcouldbeusedinmodelingandanalysis.
Introduction
ElectricityStorageTechnologyReview
PAGE
1
Introduction
ProjectOverviewandMethodology
Theobjectiveofthisworkistoidentifyanddescribethesalientcharacteristicsofarangeofenergystoragetechnologiesthatcurrentlyare,orcouldbe,undergoingresearchanddevelopmentthatcoulddirectlyorindirectlybenefitfossilthermalenergypowersystems.
Theresearchinvolvesthereview,scoping,andpreliminaryassessmentofenergystoragetechnologiesthatcouldcomplementtheoperationalcharacteristicsandparameterstoimprovefossilthermalplanteconomics,reducecycling,andminimizeoverallsystemcosts.
Thereportprovidesasurveyofpotentialenergystoragetechnologiestoformthebasisforevaluatingpotentialfuturepathsthroughwhichenergystoragetechnologiescanimprovetheutilizationoffossilfuelsandotherthermalenergysystems.
Theworkconsistedofthreemajorsteps:
Aliteraturesearchwasconductedforthefollowingtechnologies,focusingonthemostup-to-dateinformationsourcesavailable:
Stationarybatteryenergystorage(BES)
Lithium-ionBES
RedoxFlowBES
OtherBESTechnologies
MechanicalEnergyStorage
CompressedAirEnergyStorage(CAES)
PumpedStorageHydro(PSH)
ThermalEnergyStorage
SuperCriticalCO2EnergyStorage(SC-CCES)
MoltenSalt
LiquidAirStorage
ChemicalEnergyStorage
Hydrogen
Ammonia
Methanol
Eachtechnologywasevaluated,focusingonthefollowingaspects:
Keycomponentsandoperatingcharacteristics
Keybenefitsandlimitationsofthetechnology
Currentresearchbeingperformed
Currentandprojectedcostandperformance
Researchandcommercializationstatusofthetechnology
Acomparativeassessmentwasmadeofthetechnologiesfocusingontheirpotentialforfossilthermalpowerplantintegrationinthenearterm(i.e.,commerciallyavailable)aswellasinthelongerterm(i.e.,opportunitiesforadditionalresearch,demonstrationanddevelopment).
WorldwideElectricityStorageInstallations
Figure2.WorldwideElectricityStorageOperatingCapacitybyTechnologyandbyCountry,2020
Source:DOEGlobalEnergyStorageDatabase(Sandia2020),asofFebruary2020.
Worldwideelectricitystorageoperatingcapacitytotals159,000MW,orabout6,400MWifpumpedhydrostorageisexcluded.TheDOEdataiscurrentasofFebruary2020(Sandia2020).
Pumpedhydromakesup152GWor96%ofworldwideenergystoragecapacityoperatingtoday.
Oftheremaining4%ofcapacity,thelargesttechnologysharesaremoltensalt(33%)andlithium-ionbatteries(25%).FlywheelsandCompressedAirEnergyStoragealsomakeupalargepartofthemarket.
Thelargestcountryshareofcapacity(excludingpumpedhydro)isintheUnitedStates(33%),followedbySpainandGermany.TheUnitedKingdomandSouthAfricaroundoutthetopfivecountries.
Figure3.WorldwideStorageCapacityAdditions,2010to2020
Source:DOEGlobalEnergyStorageDatabase(Sandia2020),asofFebruary2020.
Excludingpumpedhydro,storagecapacityadditionsinthelasttenyearshavebeendominatedbymoltensaltstorage(pairedwithsolarthermalpowerplants)andlithium-ionbatteries.
AbouthalfofthemoltensaltcapacityhasbeenbuiltinSpain,andabouthalfoftheLi-
ionbatteryinstallationsareintheUnitedStates.
Redoxflowbatteriesandcompressedairstoragetechnologieshavegainedmarketshareinthelastcoupleofyears.Themostrecentinstallationsandexpectedadditionsinclude:
A200MWVanadiumRedoxFlowBatterycameonlinein2018inDalian,China.
A300MWcompressedairfacilityisbeingbuiltbyPG&EinCalifornia–estimatedonline
dateis2020.
TheIssueatHand:LargeMarketPenetrationofIntermittentElectricityGenerationCapacity
Figure4.IllustrativeExampleoftheImpactofPVDeploymentonGeneratorDispatch
Source:OnLocationusingresultsfromtheNEMSREStoreModel
Recentandprojectedfutureelectricitygeneratingcapacityisexpectedtobeincreasinglynon-dispatchablerenewable,especiallysolarPV,leadingtosqueezingofothergeneratingsources.
Inaddition,mostfossilthermalpowerplantslackthecapabilitytoquicklyrampdowngenerationwhenthesunrisesandrampupwhenthesunsetsbecauseofthermalcyclinglimitations.
Therepresentative24-hourloadprofileshowninFigure4wascreatedusingresultsoftheEIANEMSREStoremodel1.ThisprofileillustratessomeofthechallengesfacingfossilthermalplantdispatchinregionswithlargedeploymentofPV’sonthegrid.
AssolarPVgeneration(shownastheredbarsinthechart)rampsupduringthemid-day
hours,coalgeneration(pinkbars)issqueezedoutofthegenerationmix.
Likewise,asPVgenerationrampsdowninthelateafternoonhours,coalgenerationlevelsaregraduallyrestoredtobaseloadlevels.
Solargenerationthatexceedsthesystemloadrequirement(blueline)iscapturedand
storedbythesystem’sstoragecapacityandisthendischarged(brownbars)duringtheshoulderhourswhensolargenerationisnotavailable.
Fossilthermalplantsthathaveonsitestoragecapabilitycouldstoreexcessgenerationinthemid-dayhourstoreducetheneedtorampdownduringthosehours.Thestoredelectricitycouldthenbedischargedduringhourswhensolarisnolongeravailable,especiallyinregionswithpeakhoursthatoccurlaterintheday.Thiswouldincreasethetotalgenerationand
efficiencyofthefossilplant,therebyreducingtheneedtocycleanditsassociatedcosts.
1FormoreinformationabouttheEIANEMSREStoremodel,seeEIA“AssumptionstotheAnnualEnergyOutlook2020:ElectricityMarketModule,”https://
/outlooks/aeo/assumptions/pdf/electricity.pdf.
ServicesProvidedbyEnergyStorageSystems
Energystoragesystemscanprovideindirectanddirectbenefitstofossilthermalpowerplants.
IndirectBenefits:Grid-ConnectedServicesProvidedbyEnergyStorage
Figure5.OverviewofRangeofServicesThatCanBeProvidedbyEnergyStorageSystems
Source:(InternationalRenewableEnergyAgency2017)
Electricitystoragesystemscanprovideawiderangeofservicestogenerators,utilities,andcustomerswhenconnectedtoapowergrid:
Generationorbulkenergyservices
Energytime-shifting/generationarbitrageinvolvesgeneratingorpurchasingelectricity
attimeswhenelectricityratesarelowandstoringthatelectricityforsalelaterwhenratesarehightoreducecostsand/ormaximizerevenues.
Electricsupplycapacityandpeakdemandmanagementprovidessupportattimesof
peakdemandbystoringelectricityatoff-peakhoursanddischargingwhendemandishighest.Thisallowsutilitiestodeferoreliminatetheneedforbuildingadditionalpeakingcapacitysuchascombustionturbines.
Capacityfirming/smoothingallowsgeneratorstomaximizetheavailabilityoftheir
generation.
Forbaseloadplants,storagesystemscanstoreelectricityduringperiodsoflowdemand(orhighnon-dispatchablegenerationsuchassolarPV)whenbaseloadplantswouldnormallyrampdowntheirgeneration,allowingtheseplantstooperateatahigherlevel.Similarly,duringperiodsofhighdemandwhenplantsneedtorampupgeneration,storedelectricitycanbereleasedtoreducethedemandforcycling.Alsoknownasloadfollowing,energystoragecanresultislesscycling,whichcanreduceoperatingcosts,increaseplantefficiency,andextendplantlifetime.
Forrenewableplants,storagesystemscanbeusedtocapturesolarandwindgenerationthatmayexceeddemandduringcertainhoursoftheday,thusreducingtheneedtocurtailgeneration.Thestoredelectricitycanthenbedischargedduringthe“shoulder”hourstosmoothoutgeneration,especiallyforsolargenerationthatrampsupquicklyasthesunrisesandrampsdownquicklyasthesunsets,puttingastrainontheelectricsystem.
Gridservices
AncillaryServicesprovidethenecessarysupportforthetransmissionofelectricpower
fromsellertopurchasertomaintainreliableoperationsoftheinterconnectedtransmissionsystem.Examplesincludefrequencyregulation,voltagecontrol,blackstartsupport,andspinning,non-spinningandsupplementalreserves.
Transmissionanddistributionupgradescanbedeferredtoreducesystemcosts
Transmissioncongestioncanberelievedbyplacingstoragesystemsinstrategic
locationsalongcongestedtransmissionlines.Thisreducescongestionchargesandthepotentialforsupplydisruptions.
Behindthemeter
Storagesystemscanbeusedbycustomerstoprovidebackuppowerforreliability,
demandshiftingtoreduceelectricitybills,anddemandchargemanagementtoreducetheiraveragepeakloadanddemandcharges(Hewettetal.2016).
Storagetechnologieshavedifferentattributesthatmakethemmoresuitableforonetypeofserviceoveranother.Attributessuchasstoragecapacityandduration,responsetime,round-tripefficiency,cost,andexpectedlifetimeplayaroleindeterminingthebestapplicationforeachtechnology.
DirectBenefits:IntegratingEnergyStorageDirectlywithGeneration
Integratingenergystoragedirectlywithgeneration,alsoknownas“hybridenergystorage,”arepowerplantswithon-sitestorage.
Manysolarplantshavechosentobuildon-sitestorage,includingPVplantspairedwithbatteriesandsolarthermalplantspairedwiththermalstoragesuchasmoltensalt.
NRELestimatesthatco-locatingLi-Ionbatteryenergystorage(BES)withaPVsystemwouldsaveupto8%incapitalcosts(Fu,Remo,andMargolis2018)duetosavingsarisingfrom:
Siteacquisition,preparation,andpermitting,
Sharedswitchgear,transformer,andcontrolequipment,
Installationlabor,overheadandprofit.
OpportunitiesforFossilThermalIntegrationwithStorage
Thermalstoragetechnologiesareabletostorewasteheatproducedbythefossilpowerplantanduseittodriveaturbineandsupplementthefossilplant’sgenerationduringpeakhours.
Chemicalstoragetechnologiescanusethewasteheatforchemicalprocessessuchashigh-temperatureelectrolysisandammoniacracking.
Batterytechnologiescanstoreexcesselectricityproducedbythefossilpowerplanttomaximizegenerationduringpeakandoff-peakhours.
Otherbenefitsfromfossil/storageintegrationinclude:
Sharedinfrastructuresuchastransformersandtransmissionlines,thusreducingthe
investmentrequiredforinstallation.
Reducedthermalgeneratorcyclingreduceswearandtearontheequipmentandimprovestheplant’sheatrate.
Storagetechnologiescanprovideancillaryservicesthatcannotbemetbyfossilthermal
technologies,providinganadditionalsourceofrevenue.
Figure6.Co-LocatingVs.StandaloneEnergyStorageatFossilThermalPowerplantsCanProvideNetBenefitsDependingonAncillaryElectricMarketStructure
Source:(Sejatietal.2019)
Co-locatingenergystoragewithneworexistingfossilplantscanalsosavemoneyandincreasethevalueofthefossilplantthroughthesamebenefitsasdescribedabove.Inaddition,benefitscanarisefrom:
Greaterutilizationofenergythatmayotherwisebecurtailedduringperiodsoflow
demandandutilizethatunit’selectricityorsteamoutputtoproduceanalternative,marketable,product.
Reducedwearandtearfromthermalgeneratorcycling(Gormanetal.2020).
Improvedheatrateduetolesscycling,asdepictedabove.
Betterreturnsoninstalledcapacityifelectricpowermarketsarenotadequately
compensatingfossilthermalpowerplantsfortheircontributiontotheelectricgrid.
TechnologyReviews
ElectricityStorageTechnologyReview
PAGE
8
TechnologyReviews
Thissectionreviewstheliteratureonenergystoragetechnologiesandsummarizeseachasfollows:
TechnologyDescription
TechnologyBenefitsandLimitations
TechnologyStatusincludingresearchopportunities
TechnologyCostProjections
Inperformingtheworkitwasfoundthatthetechnologiescanbeorganizedbycategory,asfollows:
StationaryBatteryEnergyStorage
MechanicalEnergyStorage
ThermalEnergyStorage
ChemicalEnergyStorage
TechnologyReviews
StationaryBatteryEnergyStorage–Lithium-IonBES
ElectricityStorageTechnologyReview
PAGE
10
StationaryBatteryEnergyStorage
Lithium-IonBES
TechnologyDescription
Figure7.IllustrativeConfigurationofaStationaryLithium-IonBES
LithiumIonBattery
Cathode
Li+
Li+
discharge
Li+
Li+
Li+
Li+
Li+
charge
Anode
DirectCurrent
PowerConversionSystem(PCS)
DCACDCAC
Grid
Li+
Li+
Electrolyte(medium)
Separator
Source:OnLocation
AstationaryBatteryEnergyStorage(BES)facilityconsistsofthebatteryitself,aPowerConversionSystem(PCS)toconvertalternatingcurrent(AC)todirectcurrent(DC),asnecessary,andthe“balanceofplant”(BOP,notpictured)necessarytosupportandoperatethesystem.
Thelithium-ionBESdepictedinError!Referencesourcenotfound.illustratesthecathodeandanodeindischargemode(duringchargingtheelectrodesarereversed):
Charging:Powerisappliedtothebatterybyprovidingahighervoltageatthepositive
electrode,whichinduceslithiumionstobedisplacedfromthatelectrodethatthentransportthroughtheelectrolyte,throughtheseparator,andarethencollectedwithinthenegativeelectrode.
Discharging:Powerisextractedthroughreversingtheprocessbyapplyingaloadonthe
battery.
Thedischarge/chargecycleleadstothesebatteriesbeingreferredtoas“rockingchairbatteries.”
Thebatteryisaself-containedstoragedevicethatissizedinawaythatconsiders:
Dischargehours(MWh),
Maximumrequiredoutput(MW),and
Designlifeofthebattery(numberofcycles),whichisafunctionofbatterychemistry,
expectedutilization,andageofthebattery.
ThePCSscaleswiththemaximumratedBESoutputcapacity,measuredinkW.
Thefirstbatterieswereusedforconsumerelectronicssuchascellularphonesbuttheyhavenowbeenscaledforuseinelectricvehiclesandlarge-scalegridstorageapplications.
Li-ionbatterycellsconsistofagraphiteanode,metal-oxidecathode,andalithiumsaltelectrolytegel.Forstationarystorageapplications,thesecomponentsarepackagedinapouchorotherconfiguration.Batterycellsareintegratedintobatterymodules,whichareinstalledinstandard19-inch-wideracksinabuildingorspecializedcontainertocreateanintegratedbatterysystem(Aquinoetal.2017).
Theterm“lithium-ion”referstoavarietyofdifferentchemistries,allofwhichoperatebytransferringlithiumionsbetweentheelectrodesduringthechargeanddischargereactions.Lithium-ioncellsdonotcontainmetalliclithium;instead,theionsareinsertedintoothermaterialssuchaslithiatedmetaloxidesorphosphatesinthepositiveelectrode(cathode)andcarbon(suchasgraphite)orlithiumtitanateinthenegativeelectrode(anode)(EnergyStorageAssociation,n.d.).
Theprimarychemistriesinusetodayare:
Lithiumnickelmanganesecobaltoxide(NMC)
Lithiummanganeseoxide(LMO)
Lithiumironphosphate(LFP)
Lithiumtitanate(LTO)
NMCarethemostpopularchemistriesingrid-scalestoragesystemsbecausetheydemonstratebalancedperformancecharacteristicsintermsofenergy,power,cost,andcyclelife.
Li-ionbatteriesarehighlysensitivetotemperature.Thebuildingorcontainerhousingthebatterysystemtypicallyincludesanactivecoolingsystemtoensurethebatteriesstaywithinanoptimaltemperaturerangeofaround70°F(Aquinoetal.2017).
TechnologyBenefitsandLimitations
Figure8.SummaryOperatingCharacteristicsofLithium-IonBES
Source:(Kimetal.2018)
Benefits:
LowCost:Lithium-ionbatterycostshavedeclineddramaticallyinrecentyears,asmuchas80%between2010and2017(DeloitteCenterforEnergySolutions2018).Thisdeclineisdueinparttosynergieswiththescaleofmanufacturingandresearchinotheruses,includinginelectricvehiclesandelectronics.
Operatingcharacteristics:
Veryfastresponserates(afractionofasecond)makingthemgoodcandidatesforgrid
balancingservices
Flexiblesizesandshortconstructiontimes.Forexample,“In2017,Teslabuilta
100MW/130MWhcontainerizedlithium-ionstoragesysteminAustraliawithinjustthreemonths.”(Kairies,Figgener,andHaberschusz2019).
Highlyefficient,generallyrangingfrom85%to95%efficiency(Zablocki2019).
Dischargetimesof1secondtoupto8hours
Comparedtootherbatteryoptions,lithium-ionbatterieshavehighenergydensityand
arelightweight.
Regulatoryincentives:
BatteryinstallationsaregrowingrapidlyinthemanyU.S.statesthathavestoragegoals,
mandates,andincentives.AccordingtotheU.S.EIAAnnualEnergyOutlook2020,statemandatesalonetotalmorethan6,500MWby2030.
Almosteverynationischangingitswholesalemarketrulestoallowbatteriesto
competeforcapacityandancillaryservices,suchasfrequencyregulationandvoltagecontrol(DeloitteCenterforEnergySolutions2018).
Limitations:
“Duetothetemperaturesensitivity,firehazard,andspecialshippingrequirements,manystatesclassifystationaryLi-ionsystemsashazardousmaterials.”(Aquinoetal.2017)
Reportsofpoliticalunrestandhumanrightsabuses,includingchildlabor,relatedtocobaltminingintheDemocraticRepublicofCongowhichaccountsforroughly60percentofglobalproductionofcobalt(e.g.,Barrera2020).
Environmentalaspectsrelatedtoveryexpensiverecyclingofthemanyhazardoussubstances(cobalt,nickel,organicelectrolytes)(Noacketal.2019).
Poorscalabilityforhighenergy(longduration)applications
Notalllithiumbatterychemistriesusecobalt.TeslaannouncedinFebruary2020th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年原罪风险保险合同
- 隧道工程课程设计汇报
- 2025年度煤炭深加工产品研发与市场推广合作协议4篇
- 二零二四企业销售合同智能预警与风险提示协议3篇
- 二零二五版电子商务平台安全风险评估与改进合同3篇
- 2025年医疗康复理疗培训协议
- 2025年度项目部劳务班组安全生产及施工安全责任书3篇
- 二零二五年度板材原材料采购与库存管理合同3篇
- 2025年跨境电子商务平台服务合同42篇
- 专业消防工程协议模板2024年版版B版
- ICU常见药物课件
- CNAS实验室评审不符合项整改报告
- 农民工考勤表(模板)
- 承台混凝土施工技术交底
- 卧床患者更换床单-轴线翻身
- 计量基础知识培训教材201309
- 中考英语 短文填词、选词填空练习
- 一汽集团及各合资公司组织架构
- 阿特拉斯基本拧紧技术ppt课件
- 初一至初三数学全部知识点
- 新课程理念下的班主任工作艺术
评论
0/150
提交评论