版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JournalofPhysics:ConferenceSeries
PAPER•OPENACCESS
ComparativeStudyofEnergyStorageSystems(ESSs)
Tocitethisarticle:LIMAsrietal2021J.Phys.:Conf.Ser.1962012035
Viewthe
articleonline
forupdatesandenhancements.
Youmayalsolike
FoodCodeBreaker(FCB)–Developing
theMulti-LingualFoodCodeTranslation
AndroidApplicationUsingMulti–Options
CodeReaderSystem
SharminiAbdullah,MohamedElshaikh,MuhammadBazliMahmoodetal.
OptimizationofAnthraquinoneDye
WastewaterTreatmentusingOzoneinthe
PresenceofPersulfateIoninaSemi-
batchReactor
NAMHussin,CZAAbidin,Fahmietal.
Mechanical,DurabilityAndRheology
PropertiesOfUltraHighPerformance
Concrete(UHPC)WithLowCement
Content
MZAMZahid,BHABakar,FMNazrietal.
ThiscontentwasdownloadedfromIPaddress53on09/04/2024at00:29
The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing
JournalofPhysics:ConferenceSeries
1962(2021)012035
doi:10.1088/1742-6596/1962/1/012035
ComparativeStudyofEnergyStorageSystems(ESSs)
LIMAsri,WNSFWAriffin,ASMZain,JNordinandNSSaad
FacultyofElectronicEngineeringTechnology,UniversitiMalaysiaPerlis,02600Arau,Malaysia
E-mail:
lyana6060@,
suryanifiruz@.my,
ainisyuhada@.my,
junita@.my,
nazatul@.my
Abstract.Renewableenergy(RE)resourceshaveshownimpressivegrowthglobally,asthesesourcesdonotprovideenoughamountthatisreadilyadaptabletoconsumerneeds,itcanrarelyallowanimmediateresponsetodemand.However,intermittencyinREsupply(RES)sources,combinedwithfluctuatingdemandshiftsovertime,hascausedahighriskofsustainingsystemreliabilitytoprovidecustomerswithsufficientsupply.TheexcessenergyproducedbyRESscanbestoredinamyriadofwaysandusedlaterduringshortagesorintermittentperiods.ThisstudywascarriedouttounderstandhowtoprovideenergystoragetocreateafuturebuiltenvironmentwhereREsystemsplayanessentialrole.Therearedifferenttypesofastoragesystemwithdifferentcharacteristic,parameters,andcosts.Thispaperhighlightsthechronology,classification,characteristic,comparison,andassessmentofESSsandenergystoragesystemsdeployment.
Introduction
Engineersandpolicymakersareincreasinglyfocusingonenergystorageduetorisingattentionabouttheenvironmentalconsequencesoffossilfuelsandtheefficiencyanddurabilityofenergygridsworldwide.Infact,energystoragecanhelpresolvetheintermittentnatureofwindpowerandsolar;insomeinstances,itcanalsorespondquicklytosignificantdemandchanges,makethegridreactingquicklyandminimizetheneedtoinstallbackuppowerplants.Anenergystoragefacility’sefficiencyisdeterminedbyhowrapidlyitcanrespondtodemandchanges,itstotalcapacitytostoreenergy,therateofenergylostinthestorageprocess,andhoweasilyitcanberecharged.
SolarPVonlysuppliespowerthroughoutthedaywiththepeak.Totalproductionisdifferenteveryday.Windproductionisunpredictablebutcanbedistributed24hoursperday.However,averageperformancecanvarydramatically;forexample,inoneregionofGermanyalone,therecanbealmost20GWchangeoveraday[1].Intermittentgrowthinrenewableenergyleadstochallengesinmaintainingthebalancewithinsupplyanddemand.Theclosureofconventionalpowerplantsdecreasesthefrequencycontrolcapability,whichiswhyenergystorageisneeded.Energystoragecanalsosatisfytheneedforelectricityatpeaktimes,i.e.,whenairconditionersblastduringsummertimeorwhenhouseholdsturnonthelightsandappliancesatnight.Aspowerplantsneedtoscaleupproductiontomeettheincreasedenergyuseduringpeaktimes,electricitybecomesmorecostly.Energystorageprovideshighergridefficiencybecauseutilitiescanpurchaseelectricityatoff-peakhourswhenenergyischeapandsellittothegridwhenitis
moreindemand[2].
ContentfromthisworkmaybeusedunderthetermsoftheCreativeCommonsAttribution3.0licence.Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.
PublishedunderlicencebyIOPPublishingLtd 1
The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing
JournalofPhysics:ConferenceSeries
1962(2021)012035
doi:10.1088/1742-6596/1962/1/012035
PAGE
10
OverviewofEnergyStorageSystems
ChronologicalorderofEnergyStorageSystems
Theprocessesofelectro-chemicalsenergystoragestartedtodevelopveryrapidlyinthelate19thcentury.In1749,AmericanscientistBenjaminFranklinfirstusedtheword”battery”ashewasdoingexperimentswithelectricityusingasetoflinkedcapacitors.TheItalianphysicistAlessandroVoltainventedthefirstrealbatteryin1800[3].
Table1.ChronologicalorderofESS
Year
Types of
battery
Description
Ref
1800
Voltacell
TheinventionofthefirstbatteryledtotheVoltacell,whichused
abrinesolutionasanelectrolyteandhadalternatingcopperandzincdiscsdividedbycardboard.
[7,8]
1836
Danielcell
Regularlyidentifiedasazinc-copperbatterythattakesadvantage
ofaporousbarrierbetweentwoelectrolytes,theVoltacelldevelopedintotheDanielcell.JohnFredericDaniell,aBritishchemist,inventedtheDanielCell.
[9]
1866
Leclanche
cell
DanielcelltransformsintoaLeclanchecellinventedbyaFrench
engineercontaininganammoniumchlorideconductingsolution:theelectrolyte,anegativezincterminalandapositivemanganesedioxideterminal.
[10]
1859
Lead-acid
Thefirstrechargeablebatterybasedonlead-acidwasinventedby
theFrenchphysicianGastonPlant´e,astilluseddevice.Theywereallprimarybatteriesuntilthen,meaningtheywerenottypicallyrechargeable.
[7,8]
1899
Nickel–
cadmium(NiCd)
Thenickel-cadmium(NiCd)batteryusingnickelasthepositive
electrode(cathode)andcadmiumasthenegativeelectrode(anode)wasinventedbySweden’sWaldemarJungner.
[11]
1901
Nickel-iron
(NiFe)
ThomasEdisonreplacedcadmiumwithiron,whichwascalled
nickel-iron(NiFe).
[8,11]
1967
Nickel–metal
hydride,NiMH
Nickel-metal-hydridedevelopmentbeganin1967.Itactsasa
substituteforNiCdbecauseitonlyhasmildtoxicmetalsandprovideshigherspecificenergy.
[12]
1980
Li-ion
AmericanphysicistJohnBannisterGoodenoughinventedthe
lithium-ionnervoussystem.
[13]
1980
Lithium-
polymer
Thelithium-polymerbatteryinventioncameinthe1980s.Sony
integratedGoodenough’scathodeandacarbonanodeintotheworld’sfirstcommerciallithium-ionrechargeablebatteryin1991.
[14]
1954-
latest
Solarfuel
Solarfuels,inspiredbyenvironmentalconcerns,haverecently
gainedinterest.Thisisstillunderdevelopmentandstudy.Inthe1950s,BellLaboratoriesdiscoveredthatsemiconductingmaterialsweremorepowerfulthanselenium,suchassilicon.Theysucceededinmakingasolarcellthatwas6percentefficient.ThebrainsbehindthesiliconsolarcellatBellLabswereinventorsDarylChapin,CalvinFullerandGeraldPearson.
[15]
ThesefirstmeasureswereidentifiedwiththenamesofLuigiGalvani(1737-1798)andAlessandroContediVolta(1745-1827),whichremaininhistorythroughthewordsweusetoday:”galvanicelement”and”volt”.Galvanifoundthatifdeathmeetsvariousmetals,afroglegbeginstomove.Onthecontrary,Voltastudiedtheoutcomesobtainedwhencertain
saltsolutionsareinsertedintovariousmetals.Thelead/acid/leaddioxide(lead-acidbattery)mechanismwillnotbefoundwithoutthesetests[4].Table1showsthechronologyoftheenergystoragesystem.
ComparisonandcharacteristicofEnergyStorageSystem
Therefore,itiscrucialtocriticallyanalyzethefundamentalcharacteristicsofESSstocreatebenchmarksforselectingthebesttechnology.TheseESSscanalsobedefinedbytheirtechnicalspecifications,i.e.,maxpowerrating,dischargetime,energydensityandefficiency.Table2concentratesinESSscurrentlyproficientofgivingcriticalstoragecapacitiesofatleast20MW.AglossaryoftechnicaldataESSsisgiventohelpanybeginnerclearlyunderstandthecharacteristics[5,6].
Table2.ChronologicalorderofESS
MaxPower
Rating(MW)
Discharge
time
Max cycles
orlifetime
Energy
density(watt-hourperliter)
Efficiency
Pumpedhydro
3,000
4h-16h
30-60years
0.2-2
70-85%
Compressedair
1,000
2h-30h
20-40years
2-6
40-70%
Moltensalt
150
hours
30years
70-210
80-90%
Li-ionbattery
100
1min-8h
1,000-10,000
years
200-400
85-95%
Lead-acid
100
1min-8h
6-40years
50-80
80-90%
Flowbattery
100
hours
12,000-14,000
years
20-70
60-85%
Hydrogen
100
min-week
5-30years
600(atbar)
25-45%
Flywheel
20
secs-mins
20,000-
100,000years
20-80
70-95%
Maxpowerrating(MWorkW):Maxpowerratingforastoragesystemdeterminestherateofenergystorageinthestoragemedium.Itisalsocommonlydeterminedasaveragevalueandapeakvaluethatisoftenusedtoindicatemaximumpower,Pmax(W).
Dischargetime(energyperunit):Theamountoftimetakentofullydischargeenergyatitsratedpowerbythestoragesystemiscalleddischargetime.Themaximum-powerforthedurationofthedischarge,τ(s)=Wst/Pmax,whereWstistotalenergystoredandPmaxismaximumdischargepower.
Maxcycles/Lifetime(cycles/years):Thelifetimeforastoragesystemistoestimateitsperformanceandbespecifiedasthenumberofyearsaccordingtoitsratedcapacityandratedpower.
Energydensity(kWh/L):Theamountofenergythatcanbecontainedinthestoragematerialperunitvolumeisreferredtoastheenergydensity.
Efficiency(%):TheratiobetweenenergythattheESSdischargedandtheamountofenergycontainedinitisreferredtoastheESSdischargeefficiency.Theratioofreleasedenergyandstoredenergyisn=Wut/Wst,whereWutisusablereleasedenergyandWstistotalenergystored.
ClassificationofESSs
Thegrowingneedforenergystoragehaspushedintoanever-endingefforttofindnewstoragesystemsolutionsthataremoreeffectiveandcatertospecificrequirements.Therearemanytypes
ofESStechnologiescoexistingandcanbeclassifiedonthebasisoftheirparticularfunctions,responsetime,theformofenergystored,storagedurationandetc.,[5].Theenergystoragesystemmaybeusedforarangeofapplications.Someofthemmaybepreciselyselectedforaparticularapplication.Ontheotherhand,someothersaretheframeworkinquestioninabroaderframework.
TheESSclassificationisbroadlydeterminedbasedontheformofconvertedenergy.Energycanbeconvertedeitherintheformofthermal,chemical,mechanical,orelectrochemicalenergyormagneticorelectricalfields.Figure1illustratestheESS’sclassification.
Figure1.Theclassificationofenergystoragesystems.
ComparisonandAssessmentofESSs
ManystudieshavebeenperformedspecificallyforthepurposeofdrawingupathoroughcomparisonbetweenthevarioustypesofESS.
Comparisonbetweenpowerdensityandenergydensity
Figure2showsthecomparisonofESStechnologiesbetweenenergydensityandpowerdensity.Whenthedensityofenergyandpowerismoresignificant,thestoragesystem’svolumeislower.Onthetopright,highlydenseESStechnologieswhichareidealformobileapplications.Theextensiveandhigh-volumestoragesystemislocatedatthebottomleft.Flowbatteries,CAESandPHS,havealowenergydensityandareextensivearea.Thevolumeofitconsumesmorestoragesystems.Ontheotherhand,Li-ionbatterieshavealargeenergydensityandahigh-powerdensity,soLi-ioniscurrentlyusedinmanyapplications.
Figure2.ComparingtheESStechnologiesbetweenpowerdensityandenergydensity[5,16].
Comparisonbetweenthesystempowerratinganddischargetime
Figure3showstheapplicationoftheESSsgenerallyclassifiedintolarge,medium,andsmallscalesbasedonthedischargetimeatratedpowerandpowerrating.
Electrochemicalstoragesystemssuchaslithium(Li-ion),lead-acidandNaSbatteriesareprimarilyappropriateforapplicationswithamediumdischargetimeofminutestohours.Forashortdischargetimeatratedpowerapplications,alltechnologiesforhigh-powerstoragesuchasFlywheels,SupercapacitorandSMESaresuitable.PHSandCAESarelocatedbetweenmediumdischargetimesofstoragesystemandlargescalefordischargetimesatratedpower.
ESSscurrentlyavailableforuseinapplicationsinvolvingpowerqualityareSupercapacitors,Ni-Cd,lead-acidbatteryandLi-ionbattery,andFlywheelsalsoappeartobeapromisingsystemforthoseapplications.
Comparisonoflifeexpectancyandefficiencyofenergy
Figure4representsthecomparisonbetweenlifeexpectancyandenergyefficiencyofESSs.Beforechoosingastoragetechnology,thistwo-parameterisvitaltoconsider,amongothers,asitaffectsthetotalstoragecosts.
BothESShigh-powertechnologies,i.e.,FlywheelsandECCapacitors,aredistinguishedbytheirperformance,rangingfrom90-95%and84-97%,respectively.Currently,diabaticCAESsystemshavealowefficiencyoflessthan55%.However,thenewadiabaticCAESplantispresumedtoachieveanefficiencyofaround70%[16].Li-ionbatterieshavethehighestefficiencyoftheelectrochemicalstoragesystem,estimatedtobeover90%oreven97%.PHSsystemswillrunat70-87%efficiency,andtheuseofanadjustablespeedmachinecanincreaseefficiencyinthefuture.
LifeexpectancycanbegiveneitherincyclesoryearsforESSs.Intraditionalbattery
Figure3.ComparisonofESSsregardingtheratingofthepowersystemandtimeofdischargeatratedpower[5,17].
Figure4.Comparisonbetweenlifeexpectancyandenergyefficiency[17].
technology,lead-acidbatteriesintheorderof2000cycleshavethelongestcyclelife.however,morecyclescanbereachedbyLi-onandNASthanlead-acidbatteries.CAES,PHSandflywheelsaretechnologieswithaverylong-lifecycleofbetween10,000and30,000cycles,while
ECCapacitorsareabout100,000cycles[5].
ComparisonoftheinvestmentcostofESSs
TheinvestmentcostsofESSsarecomparedinFigure5.Storage-relatedinvestmentcostsareasignificanteconomicparameterandimpacttheoverallcostofenergyproduction.Hence,certaintypesofstoragesystemscanonlybecomeprofitableifsuppliedwithacertainminimumofresources.Toachieveaprecisecostanalysis,thetotalcostofthesystemmustbeappraised.
Figure5.ComparisonbetweenCapitalCostperUnitEnergyandCapitalCostperUnitPower[6].
Concerningthecapitalcostperunitofenergy,ECcapacitorsandhigh-powerflywheelshavethegreatestinvestmentcostofsomethousand/kWh.Atthesametime,metal-airbatteriesarethelower-pricedstorageoption.CAESalsohaveameagrecostforthestoragesystem.Long-durationflywheels,Li-ionandthezinc-airbatteryaremost-costlytechnologiesinthecapitalcostperunitpower.Apartfromlong-durationECcapacitorsandhigh-powerflywheels,high-powerECcapacitorsarethemostaffordable.
Datain2018andpredictionin2025forcostandparameters(powerconversionsystem,capitalcost–energycapacity,thebalanceofplant,constructionandcommissioning)rangesbytechnologiesisshowninFigure6[18].
Comparisonbasedonspecificpowerandenergy
Betweentechnologiesforhigh-power,thecapacitorhasthehighestspecificpowerofmorethan100,000(W/kg),whileTESisthelowestspecificpowerwhichis10-30(W/kg)[5].Intherangeof800-10,000(Wh/kg),thefuelcellexhibitsexceptionallyhighspecificenergy.Higherspecificenergygivesanimpactonstorageweight.Figure7showsthecomparisonbetweenspecificpowerandenergy.
Figure6.Overviewofthe2018dataand2025forecastscompiledbytechnologyforparameterranges[18].
Figure7.Comparisonbetweenspecificpowerandenergy.
DeploymentofESSs
Forthefirst-everintenyears,theglobalstoragemarketisdiminishing.In2019,electricitysystemsworldwidehadadded2.9GW’sstoragecapacity,nearly30%lowerthanin2018.Thereasonsbehindthisbottom-linemarkhowmuchstorage,presentinjustafewkeymarketsandprofoundlyreliantbasedonpolicysupport,continuesasanearly-stagetechnology.However,ifadequatelydeployed,energystorageprovidessystemoperatorswithflexibleandquickresponsecapabilitytoefficientlymanagegenerationandloadvariability.ESSshaverecentlyundergoneanaccelerateddecreaseincost,reflectingthelearningcrescentsseenoverthepastdecadefromwindandsolargeneration.
Figure8.The2013-2019annualdeploymentofESSbythecountry[19].
Theinstallmentofenergystoragehasstartedtogainmarketpopularityoverthelastfewyears.Figure8showstheIEA’scurrentdata,whichillustratesthestrideofbatteryenergystoragedeployments,exceptin2019.2016isthefirstyearinwhichtheannualdeploymentforenergystoragehasreached1GW.InKorea,annualdeploymentsdecreasedby80percentafterthe2018reportingyearwhenKoreaaccountedforone-thirdofallinstalledcapacityglobally.Thedecreasearosefromincreasingconcernin2018overmultiplefiresatstorageplantsinagrid-scale.Whilealarge-scalereviewofthefiresandsafetymeasureswascarriedout,in2019,fivemorefiresbrokeout.Theco-locationofREgenerationfacilitieswithenergystorageassets,whichhelpsstabilizegenerationandassuresmorerobustcapacityduringhighdemandtimes,hasbeenacriticaldriverofenergystoragegrowth.Large-scaleauctionwitha1.2GWofsolar-plus-storage,Indiaexpresslystartedrewardingthisapplicationin2019,requirethestoragecapacityfor50%oftheinstalledgeneration.Singaporehasdeclaredagoalfor2025,whichis200MWofstorage.IHSMarkit’sEnergyStorageBusiness,aglobalinformationproviderheadquarteredinLondon,recordsglobalinstallationsrisingbymorethan5GWin2020[20].TheothersubstantialpotentialimplementationofESSisinthemobilecommunicationarea.Thestudies
in[21–28]considercloudradioaccessnetwork(C-RAN),wheretheremoteradioheads(RRHs)areequippedwithrenewableenergyresourcesandcantradeenergywiththegrid.However,intheirproposedsystems,RRHsarenotinstalledwithfrequentlyrechargeablestoragedevices.ESSscanbeinstalledatthemasterbasestation(MBS)intheC-RANorcanbeemployedattheRRHswiththeadvancementofbatterytechnologies.Theselfenergystoragemanagementisexpectedtocontrolunequallocalrenewableenergygenerationtomatchtheenergyrequestbyreceivingterminalsthatalwayschangeovertime.
Conclusion
ViewingthepreviousworkonESSsandthereliabilityofthepowergrid,thispapercoversagreatdealofcriticalknowledgeonESSs.TheworldisobligedtobeenticedfurthertowardsESSstomovetowardsrenewableenergysources,whichwillneedafullunderstandingofthistechnology’sperspectives.Severaltypesoftechnicalparametershavebeencompared,whichwillencourageaspecifictypebasedonthemainspecifications.AbriefinsighthasbeenpresentedabouttheannualdeploymentofESS.ThemostappealingsolutionandlongtermforotherstoragesystemscompetingtodaymightnotalwaysbetheESS.However,thisimpliesthateveniftheflexibleness’sinvestmentsignalsarecurrentlylacking,assessingtheregionalandcountrypotentialwillbeimportantinthelongterm.
References
RolandBerger,“RolandBergyFocus:Businessmodelsinenergystorage,”2017.
A.Zablocki,“FactSheet:EnergyStorage(2019)—WhitePapers—EESI,”EnvironmentalandEnergyStudyInstitute,2019.[Online].Available:h
ttps:///papers/view/energy-storage-
2019.[Accessed:09-Jul-2020].
T.C.JoseAlarcoAndPeterTalbot,“Thehistoryanddevelopmentofbatteries,”pp.1–5,2018.
E.Danila,“HistoryoftheFirstEnergyStorageSystems,”Conference,2010.[Online].Available:h
ttps:///publication/271371039
HISTORYOFTHEFIRSTENERGYSTORAGESYSTEMS.[Accessed:24-Jan-2021].
E.Hossain,H.M.R.Faruque,M.S.H.Sunny,N.Mohammad,andN.Nawar,“Acomprehensivereviewonenergystoragesystems:Types,comparison,currentscenario,applications,barriers,andpotentialsolutions,policies,andfutureprospects,”Energies,vol.13,no.14.MDPIAG,01-Jul-2020.
H.Ibrahim,A.Ilinca,andJ.Perron,“Energystoragesystems-Characteristicsandcomparisons,”RenewableandSustainableEnergyReviews,vol.12,no.5.Pergamon,pp.1221–1250,01-Jun-2008.
M.S.Whittingham,“History,evolution,andfuturestatusofenergystorage,”inProceedingsoftheIEEE,2012,vol.100,no.SPLCONTENT,pp.1518–1534.
BatteryUniverisity,“InformationontheInventionoftheBattery-BatteryUniversity,”2016.[Online].Available:
/learn/article/when-was-the-battery-invented.
[Accessed:24-Jan-2021].
X.Dong,Y.Wang,andY.Xia,“Re-buildingDaniellcellwithaLi-ionexchangefilm,”Sci.Rep.,vol.4,2014.
T.E.ofE.”GeorgesL.E.B.Britannica,“GeorgesLeclanch´e—Frenchengineer—Britannica.”[Online].Available:h
ttps:///biography/Georges-Lec
lanc
he-ref272622.
[Accessed:24-Jan-2021].
BatteryAssociationofJapan,“Thehistoryofthebattery4)Thelead-acidbattery(secondarybattery),”2015.[Online].Available:
http://www.baj.or.jp/e/knowledge/history03.html.
[Accessed:24-Jan-2021].
I.Buchmann,“Nickel-basedBatteriesInformation,”Batteryuniversity,2011.[Online].Available:/learn/article/nickel-based-batteries.[Accessed:24-Jan-2021].
N.O.T.EnoughandF.O.R.Goodenough,“Themanwhobroughtusthelithium-ionbatteryattheageof57hasanideaforanewoneat92,”pp.1–15,2015.
TANKITHOONG,“Historyoftherechargeablebattery—TheStar.”[Online].Available:h
ttps://.m
y/tec
h/tech-news/2016/01/25/history
oftherechargeablebattery.[Accessed:24-Jan-2021].
ElizabethChuandD.LawrenceTarazano,“ABriefHistoryofSolarPanels—Sponsored—SmithsonianMagazine.”[Online].Available:h
ttps:///sponsored/brief-history-solar-panels-
180972006/.[Accessed:31-Jan-2021].
A.Chatzivasileiadi,E.Ampatzi,andI.Knight,“Characteristicsofelectricalenergystoragetechnologiesandtheirapplicationsinbuildings.”
M.S.GuneyandY.Tepe,“Classificationandassessmentofenergystoragesystems,”RenewableandSustainableEnergyReviews,vol.75.ElsevierLtd,pp.1187–1197,01-Aug-2017.
K.Mongirdetal.,“EnergyStorageTechnologyandCostCharacterizationReport,”2019
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《书籍设计》2022-2023学年第一学期期末试卷
- 音乐人的创作计划与演出安排
- 证券投资基金委托协议三篇
- 新余学院《中国古典舞训练》2022-2023学年第一学期期末试卷
- 西南交通大学《微机与接口技术实验》2021-2022学年第一学期期末试卷
- 西南交通大学《量子力学》2021-2022学年第一学期期末试卷
- 西南交通大学《电脑图文设计》2021-2022学年第一学期期末试卷
- 西京学院《设计表现技法》2022-2023学年第一学期期末试卷
- 2024年01月11069中央银行理论与实务期末试题答案
- 西北大学《计算机组成原理》2022-2023学年第一学期期末试卷
- 7750BRAS维护与配置(SR功能篇)
- 《投资理财》课件
- 矿井车辆安全培训课件
- 新生儿围手术护理
- 开酒店融资合同范例
- GB/T 18601-2024天然花岗石建筑板材
- 2024年企业年度规划
- 2024年全媒体运营师考试题库
- 锅炉使用单位锅炉安全日管控、周排查、月调度制度
- 《信息安全风险管理》课件
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
评论
0/150
提交评论