储能系统的比较研究_第1页
储能系统的比较研究_第2页
储能系统的比较研究_第3页
储能系统的比较研究_第4页
储能系统的比较研究_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

JournalofPhysics:ConferenceSeries

PAPER•OPENACCESS

ComparativeStudyofEnergyStorageSystems(ESSs)

Tocitethisarticle:LIMAsrietal2021J.Phys.:Conf.Ser.1962012035

Viewthe

articleonline

forupdatesandenhancements.

Youmayalsolike

FoodCodeBreaker(FCB)–Developing

theMulti-LingualFoodCodeTranslation

AndroidApplicationUsingMulti–Options

CodeReaderSystem

SharminiAbdullah,MohamedElshaikh,MuhammadBazliMahmoodetal.

OptimizationofAnthraquinoneDye

WastewaterTreatmentusingOzoneinthe

PresenceofPersulfateIoninaSemi-

batchReactor

NAMHussin,CZAAbidin,Fahmietal.

Mechanical,DurabilityAndRheology

PropertiesOfUltraHighPerformance

Concrete(UHPC)WithLowCement

Content

MZAMZahid,BHABakar,FMNazrietal.

ThiscontentwasdownloadedfromIPaddress53on09/04/2024at00:29

The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing

JournalofPhysics:ConferenceSeries

1962(2021)012035

doi:10.1088/1742-6596/1962/1/012035

ComparativeStudyofEnergyStorageSystems(ESSs)

LIMAsri,WNSFWAriffin,ASMZain,JNordinandNSSaad

FacultyofElectronicEngineeringTechnology,UniversitiMalaysiaPerlis,02600Arau,Malaysia

E-mail:

lyana6060@,

suryanifiruz@.my,

ainisyuhada@.my,

junita@.my,

nazatul@.my

Abstract.Renewableenergy(RE)resourceshaveshownimpressivegrowthglobally,asthesesourcesdonotprovideenoughamountthatisreadilyadaptabletoconsumerneeds,itcanrarelyallowanimmediateresponsetodemand.However,intermittencyinREsupply(RES)sources,combinedwithfluctuatingdemandshiftsovertime,hascausedahighriskofsustainingsystemreliabilitytoprovidecustomerswithsufficientsupply.TheexcessenergyproducedbyRESscanbestoredinamyriadofwaysandusedlaterduringshortagesorintermittentperiods.ThisstudywascarriedouttounderstandhowtoprovideenergystoragetocreateafuturebuiltenvironmentwhereREsystemsplayanessentialrole.Therearedifferenttypesofastoragesystemwithdifferentcharacteristic,parameters,andcosts.Thispaperhighlightsthechronology,classification,characteristic,comparison,andassessmentofESSsandenergystoragesystemsdeployment.

Introduction

Engineersandpolicymakersareincreasinglyfocusingonenergystorageduetorisingattentionabouttheenvironmentalconsequencesoffossilfuelsandtheefficiencyanddurabilityofenergygridsworldwide.Infact,energystoragecanhelpresolvetheintermittentnatureofwindpowerandsolar;insomeinstances,itcanalsorespondquicklytosignificantdemandchanges,makethegridreactingquicklyandminimizetheneedtoinstallbackuppowerplants.Anenergystoragefacility’sefficiencyisdeterminedbyhowrapidlyitcanrespondtodemandchanges,itstotalcapacitytostoreenergy,therateofenergylostinthestorageprocess,andhoweasilyitcanberecharged.

SolarPVonlysuppliespowerthroughoutthedaywiththepeak.Totalproductionisdifferenteveryday.Windproductionisunpredictablebutcanbedistributed24hoursperday.However,averageperformancecanvarydramatically;forexample,inoneregionofGermanyalone,therecanbealmost20GWchangeoveraday[1].Intermittentgrowthinrenewableenergyleadstochallengesinmaintainingthebalancewithinsupplyanddemand.Theclosureofconventionalpowerplantsdecreasesthefrequencycontrolcapability,whichiswhyenergystorageisneeded.Energystoragecanalsosatisfytheneedforelectricityatpeaktimes,i.e.,whenairconditionersblastduringsummertimeorwhenhouseholdsturnonthelightsandappliancesatnight.Aspowerplantsneedtoscaleupproductiontomeettheincreasedenergyuseduringpeaktimes,electricitybecomesmorecostly.Energystorageprovideshighergridefficiencybecauseutilitiescanpurchaseelectricityatoff-peakhourswhenenergyischeapandsellittothegridwhenitis

moreindemand[2].

ContentfromthisworkmaybeusedunderthetermsoftheCreativeCommonsAttribution3.0licence.Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.

PublishedunderlicencebyIOPPublishingLtd 1

The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing

JournalofPhysics:ConferenceSeries

1962(2021)012035

doi:10.1088/1742-6596/1962/1/012035

PAGE

10

OverviewofEnergyStorageSystems

ChronologicalorderofEnergyStorageSystems

Theprocessesofelectro-chemicalsenergystoragestartedtodevelopveryrapidlyinthelate19thcentury.In1749,AmericanscientistBenjaminFranklinfirstusedtheword”battery”ashewasdoingexperimentswithelectricityusingasetoflinkedcapacitors.TheItalianphysicistAlessandroVoltainventedthefirstrealbatteryin1800[3].

Table1.ChronologicalorderofESS

Year

Types of

battery

Description

Ref

1800

Voltacell

TheinventionofthefirstbatteryledtotheVoltacell,whichused

abrinesolutionasanelectrolyteandhadalternatingcopperandzincdiscsdividedbycardboard.

[7,8]

1836

Danielcell

Regularlyidentifiedasazinc-copperbatterythattakesadvantage

ofaporousbarrierbetweentwoelectrolytes,theVoltacelldevelopedintotheDanielcell.JohnFredericDaniell,aBritishchemist,inventedtheDanielCell.

[9]

1866

Leclanche

cell

DanielcelltransformsintoaLeclanchecellinventedbyaFrench

engineercontaininganammoniumchlorideconductingsolution:theelectrolyte,anegativezincterminalandapositivemanganesedioxideterminal.

[10]

1859

Lead-acid

Thefirstrechargeablebatterybasedonlead-acidwasinventedby

theFrenchphysicianGastonPlant´e,astilluseddevice.Theywereallprimarybatteriesuntilthen,meaningtheywerenottypicallyrechargeable.

[7,8]

1899

Nickel–

cadmium(NiCd)

Thenickel-cadmium(NiCd)batteryusingnickelasthepositive

electrode(cathode)andcadmiumasthenegativeelectrode(anode)wasinventedbySweden’sWaldemarJungner.

[11]

1901

Nickel-iron

(NiFe)

ThomasEdisonreplacedcadmiumwithiron,whichwascalled

nickel-iron(NiFe).

[8,11]

1967

Nickel–metal

hydride,NiMH

Nickel-metal-hydridedevelopmentbeganin1967.Itactsasa

substituteforNiCdbecauseitonlyhasmildtoxicmetalsandprovideshigherspecificenergy.

[12]

1980

Li-ion

AmericanphysicistJohnBannisterGoodenoughinventedthe

lithium-ionnervoussystem.

[13]

1980

Lithium-

polymer

Thelithium-polymerbatteryinventioncameinthe1980s.Sony

integratedGoodenough’scathodeandacarbonanodeintotheworld’sfirstcommerciallithium-ionrechargeablebatteryin1991.

[14]

1954-

latest

Solarfuel

Solarfuels,inspiredbyenvironmentalconcerns,haverecently

gainedinterest.Thisisstillunderdevelopmentandstudy.Inthe1950s,BellLaboratoriesdiscoveredthatsemiconductingmaterialsweremorepowerfulthanselenium,suchassilicon.Theysucceededinmakingasolarcellthatwas6percentefficient.ThebrainsbehindthesiliconsolarcellatBellLabswereinventorsDarylChapin,CalvinFullerandGeraldPearson.

[15]

ThesefirstmeasureswereidentifiedwiththenamesofLuigiGalvani(1737-1798)andAlessandroContediVolta(1745-1827),whichremaininhistorythroughthewordsweusetoday:”galvanicelement”and”volt”.Galvanifoundthatifdeathmeetsvariousmetals,afroglegbeginstomove.Onthecontrary,Voltastudiedtheoutcomesobtainedwhencertain

saltsolutionsareinsertedintovariousmetals.Thelead/acid/leaddioxide(lead-acidbattery)mechanismwillnotbefoundwithoutthesetests[4].Table1showsthechronologyoftheenergystoragesystem.

ComparisonandcharacteristicofEnergyStorageSystem

Therefore,itiscrucialtocriticallyanalyzethefundamentalcharacteristicsofESSstocreatebenchmarksforselectingthebesttechnology.TheseESSscanalsobedefinedbytheirtechnicalspecifications,i.e.,maxpowerrating,dischargetime,energydensityandefficiency.Table2concentratesinESSscurrentlyproficientofgivingcriticalstoragecapacitiesofatleast20MW.AglossaryoftechnicaldataESSsisgiventohelpanybeginnerclearlyunderstandthecharacteristics[5,6].

Table2.ChronologicalorderofESS

MaxPower

Rating(MW)

Discharge

time

Max cycles

orlifetime

Energy

density(watt-hourperliter)

Efficiency

Pumpedhydro

3,000

4h-16h

30-60years

0.2-2

70-85%

Compressedair

1,000

2h-30h

20-40years

2-6

40-70%

Moltensalt

150

hours

30years

70-210

80-90%

Li-ionbattery

100

1min-8h

1,000-10,000

years

200-400

85-95%

Lead-acid

100

1min-8h

6-40years

50-80

80-90%

Flowbattery

100

hours

12,000-14,000

years

20-70

60-85%

Hydrogen

100

min-week

5-30years

600(atbar)

25-45%

Flywheel

20

secs-mins

20,000-

100,000years

20-80

70-95%

Maxpowerrating(MWorkW):Maxpowerratingforastoragesystemdeterminestherateofenergystorageinthestoragemedium.Itisalsocommonlydeterminedasaveragevalueandapeakvaluethatisoftenusedtoindicatemaximumpower,Pmax(W).

Dischargetime(energyperunit):Theamountoftimetakentofullydischargeenergyatitsratedpowerbythestoragesystemiscalleddischargetime.Themaximum-powerforthedurationofthedischarge,τ(s)=Wst/Pmax,whereWstistotalenergystoredandPmaxismaximumdischargepower.

Maxcycles/Lifetime(cycles/years):Thelifetimeforastoragesystemistoestimateitsperformanceandbespecifiedasthenumberofyearsaccordingtoitsratedcapacityandratedpower.

Energydensity(kWh/L):Theamountofenergythatcanbecontainedinthestoragematerialperunitvolumeisreferredtoastheenergydensity.

Efficiency(%):TheratiobetweenenergythattheESSdischargedandtheamountofenergycontainedinitisreferredtoastheESSdischargeefficiency.Theratioofreleasedenergyandstoredenergyisn=Wut/Wst,whereWutisusablereleasedenergyandWstistotalenergystored.

ClassificationofESSs

Thegrowingneedforenergystoragehaspushedintoanever-endingefforttofindnewstoragesystemsolutionsthataremoreeffectiveandcatertospecificrequirements.Therearemanytypes

ofESStechnologiescoexistingandcanbeclassifiedonthebasisoftheirparticularfunctions,responsetime,theformofenergystored,storagedurationandetc.,[5].Theenergystoragesystemmaybeusedforarangeofapplications.Someofthemmaybepreciselyselectedforaparticularapplication.Ontheotherhand,someothersaretheframeworkinquestioninabroaderframework.

TheESSclassificationisbroadlydeterminedbasedontheformofconvertedenergy.Energycanbeconvertedeitherintheformofthermal,chemical,mechanical,orelectrochemicalenergyormagneticorelectricalfields.Figure1illustratestheESS’sclassification.

Figure1.Theclassificationofenergystoragesystems.

ComparisonandAssessmentofESSs

ManystudieshavebeenperformedspecificallyforthepurposeofdrawingupathoroughcomparisonbetweenthevarioustypesofESS.

Comparisonbetweenpowerdensityandenergydensity

Figure2showsthecomparisonofESStechnologiesbetweenenergydensityandpowerdensity.Whenthedensityofenergyandpowerismoresignificant,thestoragesystem’svolumeislower.Onthetopright,highlydenseESStechnologieswhichareidealformobileapplications.Theextensiveandhigh-volumestoragesystemislocatedatthebottomleft.Flowbatteries,CAESandPHS,havealowenergydensityandareextensivearea.Thevolumeofitconsumesmorestoragesystems.Ontheotherhand,Li-ionbatterieshavealargeenergydensityandahigh-powerdensity,soLi-ioniscurrentlyusedinmanyapplications.

Figure2.ComparingtheESStechnologiesbetweenpowerdensityandenergydensity[5,16].

Comparisonbetweenthesystempowerratinganddischargetime

Figure3showstheapplicationoftheESSsgenerallyclassifiedintolarge,medium,andsmallscalesbasedonthedischargetimeatratedpowerandpowerrating.

Electrochemicalstoragesystemssuchaslithium(Li-ion),lead-acidandNaSbatteriesareprimarilyappropriateforapplicationswithamediumdischargetimeofminutestohours.Forashortdischargetimeatratedpowerapplications,alltechnologiesforhigh-powerstoragesuchasFlywheels,SupercapacitorandSMESaresuitable.PHSandCAESarelocatedbetweenmediumdischargetimesofstoragesystemandlargescalefordischargetimesatratedpower.

ESSscurrentlyavailableforuseinapplicationsinvolvingpowerqualityareSupercapacitors,Ni-Cd,lead-acidbatteryandLi-ionbattery,andFlywheelsalsoappeartobeapromisingsystemforthoseapplications.

Comparisonoflifeexpectancyandefficiencyofenergy

Figure4representsthecomparisonbetweenlifeexpectancyandenergyefficiencyofESSs.Beforechoosingastoragetechnology,thistwo-parameterisvitaltoconsider,amongothers,asitaffectsthetotalstoragecosts.

BothESShigh-powertechnologies,i.e.,FlywheelsandECCapacitors,aredistinguishedbytheirperformance,rangingfrom90-95%and84-97%,respectively.Currently,diabaticCAESsystemshavealowefficiencyoflessthan55%.However,thenewadiabaticCAESplantispresumedtoachieveanefficiencyofaround70%[16].Li-ionbatterieshavethehighestefficiencyoftheelectrochemicalstoragesystem,estimatedtobeover90%oreven97%.PHSsystemswillrunat70-87%efficiency,andtheuseofanadjustablespeedmachinecanincreaseefficiencyinthefuture.

LifeexpectancycanbegiveneitherincyclesoryearsforESSs.Intraditionalbattery

Figure3.ComparisonofESSsregardingtheratingofthepowersystemandtimeofdischargeatratedpower[5,17].

Figure4.Comparisonbetweenlifeexpectancyandenergyefficiency[17].

technology,lead-acidbatteriesintheorderof2000cycleshavethelongestcyclelife.however,morecyclescanbereachedbyLi-onandNASthanlead-acidbatteries.CAES,PHSandflywheelsaretechnologieswithaverylong-lifecycleofbetween10,000and30,000cycles,while

ECCapacitorsareabout100,000cycles[5].

ComparisonoftheinvestmentcostofESSs

TheinvestmentcostsofESSsarecomparedinFigure5.Storage-relatedinvestmentcostsareasignificanteconomicparameterandimpacttheoverallcostofenergyproduction.Hence,certaintypesofstoragesystemscanonlybecomeprofitableifsuppliedwithacertainminimumofresources.Toachieveaprecisecostanalysis,thetotalcostofthesystemmustbeappraised.

Figure5.ComparisonbetweenCapitalCostperUnitEnergyandCapitalCostperUnitPower[6].

Concerningthecapitalcostperunitofenergy,ECcapacitorsandhigh-powerflywheelshavethegreatestinvestmentcostofsomethousand/kWh.Atthesametime,metal-airbatteriesarethelower-pricedstorageoption.CAESalsohaveameagrecostforthestoragesystem.Long-durationflywheels,Li-ionandthezinc-airbatteryaremost-costlytechnologiesinthecapitalcostperunitpower.Apartfromlong-durationECcapacitorsandhigh-powerflywheels,high-powerECcapacitorsarethemostaffordable.

Datain2018andpredictionin2025forcostandparameters(powerconversionsystem,capitalcost–energycapacity,thebalanceofplant,constructionandcommissioning)rangesbytechnologiesisshowninFigure6[18].

Comparisonbasedonspecificpowerandenergy

Betweentechnologiesforhigh-power,thecapacitorhasthehighestspecificpowerofmorethan100,000(W/kg),whileTESisthelowestspecificpowerwhichis10-30(W/kg)[5].Intherangeof800-10,000(Wh/kg),thefuelcellexhibitsexceptionallyhighspecificenergy.Higherspecificenergygivesanimpactonstorageweight.Figure7showsthecomparisonbetweenspecificpowerandenergy.

Figure6.Overviewofthe2018dataand2025forecastscompiledbytechnologyforparameterranges[18].

Figure7.Comparisonbetweenspecificpowerandenergy.

DeploymentofESSs

Forthefirst-everintenyears,theglobalstoragemarketisdiminishing.In2019,electricitysystemsworldwidehadadded2.9GW’sstoragecapacity,nearly30%lowerthanin2018.Thereasonsbehindthisbottom-linemarkhowmuchstorage,presentinjustafewkeymarketsandprofoundlyreliantbasedonpolicysupport,continuesasanearly-stagetechnology.However,ifadequatelydeployed,energystorageprovidessystemoperatorswithflexibleandquickresponsecapabilitytoefficientlymanagegenerationandloadvariability.ESSshaverecentlyundergoneanaccelerateddecreaseincost,reflectingthelearningcrescentsseenoverthepastdecadefromwindandsolargeneration.

Figure8.The2013-2019annualdeploymentofESSbythecountry[19].

Theinstallmentofenergystoragehasstartedtogainmarketpopularityoverthelastfewyears.Figure8showstheIEA’scurrentdata,whichillustratesthestrideofbatteryenergystoragedeployments,exceptin2019.2016isthefirstyearinwhichtheannualdeploymentforenergystoragehasreached1GW.InKorea,annualdeploymentsdecreasedby80percentafterthe2018reportingyearwhenKoreaaccountedforone-thirdofallinstalledcapacityglobally.Thedecreasearosefromincreasingconcernin2018overmultiplefiresatstorageplantsinagrid-scale.Whilealarge-scalereviewofthefiresandsafetymeasureswascarriedout,in2019,fivemorefiresbrokeout.Theco-locationofREgenerationfacilitieswithenergystorageassets,whichhelpsstabilizegenerationandassuresmorerobustcapacityduringhighdemandtimes,hasbeenacriticaldriverofenergystoragegrowth.Large-scaleauctionwitha1.2GWofsolar-plus-storage,Indiaexpresslystartedrewardingthisapplicationin2019,requirethestoragecapacityfor50%oftheinstalledgeneration.Singaporehasdeclaredagoalfor2025,whichis200MWofstorage.IHSMarkit’sEnergyStorageBusiness,aglobalinformationproviderheadquarteredinLondon,recordsglobalinstallationsrisingbymorethan5GWin2020[20].TheothersubstantialpotentialimplementationofESSisinthemobilecommunicationarea.Thestudies

in[21–28]considercloudradioaccessnetwork(C-RAN),wheretheremoteradioheads(RRHs)areequippedwithrenewableenergyresourcesandcantradeenergywiththegrid.However,intheirproposedsystems,RRHsarenotinstalledwithfrequentlyrechargeablestoragedevices.ESSscanbeinstalledatthemasterbasestation(MBS)intheC-RANorcanbeemployedattheRRHswiththeadvancementofbatterytechnologies.Theselfenergystoragemanagementisexpectedtocontrolunequallocalrenewableenergygenerationtomatchtheenergyrequestbyreceivingterminalsthatalwayschangeovertime.

Conclusion

ViewingthepreviousworkonESSsandthereliabilityofthepowergrid,thispapercoversagreatdealofcriticalknowledgeonESSs.TheworldisobligedtobeenticedfurthertowardsESSstomovetowardsrenewableenergysources,whichwillneedafullunderstandingofthistechnology’sperspectives.Severaltypesoftechnicalparametershavebeencompared,whichwillencourageaspecifictypebasedonthemainspecifications.AbriefinsighthasbeenpresentedabouttheannualdeploymentofESS.ThemostappealingsolutionandlongtermforotherstoragesystemscompetingtodaymightnotalwaysbetheESS.However,thisimpliesthateveniftheflexibleness’sinvestmentsignalsarecurrentlylacking,assessingtheregionalandcountrypotentialwillbeimportantinthelongterm.

References

RolandBerger,“RolandBergyFocus:Businessmodelsinenergystorage,”2017.

A.Zablocki,“FactSheet:EnergyStorage(2019)—WhitePapers—EESI,”EnvironmentalandEnergyStudyInstitute,2019.[Online].Available:h

ttps:///papers/view/energy-storage-

2019.[Accessed:09-Jul-2020].

T.C.JoseAlarcoAndPeterTalbot,“Thehistoryanddevelopmentofbatteries,”pp.1–5,2018.

E.Danila,“HistoryoftheFirstEnergyStorageSystems,”Conference,2010.[Online].Available:h

ttps:///publication/271371039

HISTORYOFTHEFIRSTENERGYSTORAGESYSTEMS.[Accessed:24-Jan-2021].

E.Hossain,H.M.R.Faruque,M.S.H.Sunny,N.Mohammad,andN.Nawar,“Acomprehensivereviewonenergystoragesystems:Types,comparison,currentscenario,applications,barriers,andpotentialsolutions,policies,andfutureprospects,”Energies,vol.13,no.14.MDPIAG,01-Jul-2020.

H.Ibrahim,A.Ilinca,andJ.Perron,“Energystoragesystems-Characteristicsandcomparisons,”RenewableandSustainableEnergyReviews,vol.12,no.5.Pergamon,pp.1221–1250,01-Jun-2008.

M.S.Whittingham,“History,evolution,andfuturestatusofenergystorage,”inProceedingsoftheIEEE,2012,vol.100,no.SPLCONTENT,pp.1518–1534.

BatteryUniverisity,“InformationontheInventionoftheBattery-BatteryUniversity,”2016.[Online].Available:

/learn/article/when-was-the-battery-invented.

[Accessed:24-Jan-2021].

X.Dong,Y.Wang,andY.Xia,“Re-buildingDaniellcellwithaLi-ionexchangefilm,”Sci.Rep.,vol.4,2014.

T.E.ofE.”GeorgesL.E.B.Britannica,“GeorgesLeclanch´e—Frenchengineer—Britannica.”[Online].Available:h

ttps:///biography/Georges-Lec

lanc

he-ref272622.

[Accessed:24-Jan-2021].

BatteryAssociationofJapan,“Thehistoryofthebattery4)Thelead-acidbattery(secondarybattery),”2015.[Online].Available:

http://www.baj.or.jp/e/knowledge/history03.html.

[Accessed:24-Jan-2021].

I.Buchmann,“Nickel-basedBatteriesInformation,”Batteryuniversity,2011.[Online].Available:/learn/article/nickel-based-batteries.[Accessed:24-Jan-2021].

N.O.T.EnoughandF.O.R.Goodenough,“Themanwhobroughtusthelithium-ionbatteryattheageof57hasanideaforanewoneat92,”pp.1–15,2015.

TANKITHOONG,“Historyoftherechargeablebattery—TheStar.”[Online].Available:h

ttps://.m

y/tec

h/tech-news/2016/01/25/history

oftherechargeablebattery.[Accessed:24-Jan-2021].

ElizabethChuandD.LawrenceTarazano,“ABriefHistoryofSolarPanels—Sponsored—SmithsonianMagazine.”[Online].Available:h

ttps:///sponsored/brief-history-solar-panels-

180972006/.[Accessed:31-Jan-2021].

A.Chatzivasileiadi,E.Ampatzi,andI.Knight,“Characteristicsofelectricalenergystoragetechnologiesandtheirapplicationsinbuildings.”

M.S.GuneyandY.Tepe,“Classificationandassessmentofenergystoragesystems,”RenewableandSustainableEnergyReviews,vol.75.ElsevierLtd,pp.1187–1197,01-Aug-2017.

K.Mongirdetal.,“EnergyStorageTechnologyandCostCharacterizationReport,”2019

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论