




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页第一章数与式真题测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2023·重庆·统考中考真题)8的相反数是(
)A. B.8 C. D.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是(
)A. B. C. D.3.(2023·内蒙古通辽·统考中考真题)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为(
)A.
B.
C.
D.
4.(2023·山东·统考中考真题)下列各式从左到右的变形,因式分解正确的是(
)A. B.C. D.5.(2023·天津·统考中考真题)计算的结果等于(
)A. B. C. D.6.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是()A.±2 B.2 C.﹣2 D.不存在7.(2023·湖南常德·统考中考真题)若,则(
)A.5 B.1 C. D.08.(2023·内蒙古赤峰·统考中考真题)化简的结果是(
)A.1 B. C. D.9.(2023·湖北荆州·统考中考真题)已知,则与最接近的整数为()A.2 B.3 C.4 D.510.(2023·上海·统考中考真题)在分式方程中,设,可得到关于y的整式方程为(
)A. B. C. D.二、填空题(本大题共10小题,每小题3分,共30分)11.(2023·四川广安·统考中考真题)的平方根是_______.12.(2023·辽宁丹东·校考二模)因式分解:______.13.(2023·河南·统考中考真题)某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.14.(2023·天津·统考中考真题)计算的结果等于(
)A. B. C. D.15.(2023·湖北黄冈·统考中考真题)请写出一个正整数m的值使得是整数;_____________.16.(2023·湖南·统考中考真题)已知,则代数式的值为________.17.(2023·湖北十堰·统考中考真题)若,,则的值是___________________.18.(2023·广东深圳·统考中考真题)已知实数a,b,满足,,则的值为______.19.(2023·湖南永州·统考中考真题)若关于x的分式方程(m为常数)有增根,则增根是_______.20.(2023·山东·统考中考真题)已知实数满足,则_________.三、解答题(本大题共11小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2023·甘肃武威·统考中考真题)计算:.22.(2023·四川内江·统考中考真题)计算:23.(2023·四川泸州·统考中考真题)计算:.24.(2023·上海·统考中考真题)计算:25.(2023·湖南·统考中考真题)先化简,再求值:,其中.26.(2023·四川·统考中考真题)计算:.27.(2023·四川眉山·统考中考真题)先化简:,再从选择中一个合适的数作为x的值代入求值.28.(2023·黑龙江·统考中考真题)先化简,再求值:,其中.29.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式的部分运算过程:解:原式…………第一步…………第二步…………第三步……(1)上面的运算过程中第___________步开始出现了错误;(2)请你写出完整的解答过程.30.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.31.(2021·重庆中考真题)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”例如:,因为,所以3507是“共生数”:,因为,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n.
第一章数与式真题测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2023·重庆·统考中考真题)8的相反数是(
)A. B.8 C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是,故选:A.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是(
)A. B. C. D.【答案】D【分析】根据合并同类项可判断A,根据完全平方公式可判断B,根据单项式除以单项式可判断C,根据积的乘方与幂的乘方运算可判断D,从而可得答案.【详解】解:,不是同类项,不能合并,故A不符合题意;,故B不符合题意;,故C不符合题意;,故D符合题意;故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键.3.(2023·内蒙古通辽·统考中考真题)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为(
)A.
B.
C.
D.
【答案】C【分析】根据被开方数大于等于0列不等式计算即可得到x的取值范围,然后在数轴上表示即可得解.【详解】解:根据题意得,,解得,在数轴上表示如下:
故选:C.【点睛】本题考查了二次根式有意义的条件,不等式的解法,以及在数轴上表示不等式的解集,理解二次根式有意义的条件是解题关键.4.(2023·山东·统考中考真题)下列各式从左到右的变形,因式分解正确的是(
)A. B.C. D.【答案】C【分析】根据因式分解的概念可进行排除选项.【详解】解:A、,属于整式的乘法,故不符合题意;B、,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C、,属于因式分解,故符合题意;D、因为,所以因式分解错误,故不符合题意;故选:C.【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.5.(2023·天津·统考中考真题)计算的结果等于(
)A. B. C. D.【答案】C【分析】根据异分母分式加减法法则进行计算即可.【详解】解:;故选:C.【点睛】本题考查了异分母分式加减法法则,解答关键是按照相关法则进行计算.6.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是()A.±2 B.2 C.﹣2 D.不存在【答案】C【分析】根据立方根的定义进行解答.【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C.【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义.7.(2023·湖南常德·统考中考真题)若,则(
)A.5 B.1 C. D.0【答案】A【分析】把变形后整体代入求值即可.【详解】∵,∴∴,故选:A.【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·内蒙古赤峰·统考中考真题)化简的结果是(
)A.1 B. C. D.【答案】D【分析】根据分式的加减混合运算法则即可求出答案.【详解】解:.故选:D.【点睛】本题考查了分式的化简,解题的关键在于熟练掌握分式加减混合运算法则.9.(2023·湖北荆州·统考中考真题)已知,则与最接近的整数为()A.2 B.3 C.4 D.5【答案】B【分析】根据二次根式的混合运算进行计算,进而估算无理数的大小即可求解.【详解】解:∵,∴,∴与最接近的整数为,故选:B.【点睛】本题考查了二次根式的混合运算,无理数的估算,熟练掌握二次根式的运算法则是解题的关键.10.(2023·上海·统考中考真题)在分式方程中,设,可得到关于y的整式方程为(
)A. B. C. D.【答案】D【分析】设,则原方程可变形为,再化为整式方程即可得出答案.【详解】解:设,则原方程可变形为,即;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.二、填空题(本大题共10小题,每小题3分,共30分)11.(2023·四川广安·统考中考真题)的平方根是_______.【答案】±2【详解】解:∵∴的平方根是±2.故答案为:±2.12.(2023·辽宁丹东·校考二模)因式分解:______.【答案】【分析】直接提取公因式m,进而分解因式即可.【详解】解:m2-4m=m(m-4).故答案为:m(m-4).【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.(2023·河南·统考中考真题)某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】【分析】根据总共配发的数量年级数量每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:套,故答案为:.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.14.(2023·天津·统考中考真题)计算的结果等于(
)A. B. C. D.【答案】C【分析】根据异分母分式加减法法则进行计算即可.【详解】解:;故选:C.【点睛】本题考查了异分母分式加减法法则,解答关键是按照相关法则进行计算.15.(2023·湖北黄冈·统考中考真题)请写出一个正整数m的值使得是整数;_____________.【答案】8【分析】要使是整数,则要是完全平方数,据此求解即可【详解】解:∵是整数,∴要是完全平方数,∴正整数m的值可以为8,即,即,故答案为:8(答案不唯一).【点睛】本题主要考查了二次根式的化简,正确理解题意得到要是完全平方数是解题的关键.16.(2023·湖南·统考中考真题)已知,则代数式的值为________.【答案】【分析】先通分,再根据同分母分式的减法运算法则计算,然后代入数值即可.【详解】解:原式=故答案为:.【点睛】本题主要考查了分式通分计算的能力,解决本题的关键突破口是通分整理.17.(2023·湖北十堰·统考中考真题)若,,则的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:,∵,,∴,∴原式,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.18.(2023·广东深圳·统考中考真题)已知实数a,b,满足,,则的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.19.(2023·湖南永州·统考中考真题)若关于x的分式方程(m为常数)有增根,则增根是_______.【答案】【分析】根据使分式的分母为零的未知数的值,是方程的增根,计算即可.【详解】∵关于x的分式方程(m为常数)有增根,∴,解得,故答案为:.【点睛】本题考查了分式方程的解法,增根的理解,熟练掌握分式方程的解法是解题的关键.20.(2023·山东·统考中考真题)已知实数满足,则_________.【答案】8【分析】由题意易得,然后整体代入求值即可.【详解】解:∵,∴,∴;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.三、解答题(本大题共11小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2023·甘肃武威·统考中考真题)计算:.【答案】【分析】利用二次根式的混合运算法则计算即可.【详解】解:.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.22.(2023·四川内江·统考中考真题)计算:【答案】4【分析】根据有理数乘方、特殊角三角函数值、负整数指数幂、零指数幂结合二次根式的混合运算法则进行计算即可.【详解】解:.【点睛】本题考查了有理数乘方、特殊角三角函数值、负整数指数幂、零指数幂以及二次根式的混合运算,熟练掌握相关运算法则是解本题的关键.23.(2023·四川泸州·统考中考真题)计算:.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.24.(2023·上海·统考中考真题)计算:【答案】【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.25.(2023·湖南·统考中考真题)先化简,再求值:,其中.【答案】,24【分析】先展开,合并同类项,后代入计算即可.【详解】当时,原式.【点睛】本题考查了平方差公式,完全平方公式的计算,熟练掌握两个公式是解题的关键.26.(2023·四川·统考中考真题)计算:.【答案】4【分析】先化简二次根式,绝对值,计算零次幂,再合并即可.【详解】解:.【点睛】本题考查的是二次根式的加减运算,化简绝对值,零次幂的含义,掌握运算法则是解本题的关键.27.(2023·四川眉山·统考中考真题)先化简:,再从选择中一个合适的数作为x的值代入求值.【答案】;1【分析】先根据分式混合运算法则进行计算,然后再代入数据求值即可.【详解】解:,∵,,∴把代入得:原式.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.28.(2023·黑龙江·统考中考真题)先化简,再求值:,其中.【答案】,原式【分析】先根据分式的混合运算法则化简,然后求出,最后代值计算即可.【详解】解:,∵,∴原式.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,正确计算是解题的关键.29.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式的部分运算过程:解:原式…………第一步…………第二步…………第三步……(1)上面的运算过程中第___________步开始出现了错误;(2)请你写出完整的解答过程.【答案】(1)一;(2)见解析【分析】(1)根据解答过程逐步分析即可解答;(2)根据分式混合运算法则进行计算即可.【详解】(1)解:故第一步错误.故答案为:一.(2)解:.【点睛】本题主要考查了分式的混合运算,灵活运用分式的混合运算法则是解答本题的关键.30.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.【答案】(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x,由题意,得,解方程即可;(1)解:;(2)设被污染的数字为x,由题意,得,解得,所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TS 62818-1:2024 EN Conductors for overhead lines - Fiber reinforced composite core used as supporting member material - Part 1: Polymeric matrix composite cores
- 2025-2030年中国集线器市场运行动态与发展前景分析报告
- 2025-2030年中国铝板带箔材行业运营状况及发展规划分析报告
- 2025-2030年中国造影剂行业市场运行状况及前景趋势分析报告
- 重庆师范大学《酒水与酒吧管理》2023-2024学年第二学期期末试卷
- 宁夏大学新华学院《植物细胞工程》2023-2024学年第二学期期末试卷
- 济南大学《管理研究方法导读》2023-2024学年第二学期期末试卷
- 湖北工业大学《中学思想政治教育学科教育学》2023-2024学年第二学期期末试卷
- 天津体育职业学院《勘查地球物理方法及应用》2023-2024学年第二学期期末试卷
- 新疆机电职业技术学院《现场总线技术》2023-2024学年第二学期期末试卷
- 新课标初中语文7-9年级必背古诗文言文
- 销售合同模板英文销售合同模板
- 不忘教育初心-牢记教师使命课件
- 药品不良反应及不良反应报告课件
- FSC认证培训材料
- Germany introduction2-德国国家介绍2
- 精素材:描写植物的好词好句好段
- 急危重症患者静脉通路的建立与管理月教学课件
- 【高中语文】《登岳阳楼》课件17张+统编版高中语文必修下册
- 火力发电厂总经理岗位规范
- 华师大版八年级数学下册全册教案
评论
0/150
提交评论