版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市第八中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线y=在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y﹣5=0参考答案:B【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:y=的对数为y′==﹣,可得在点(1,1)处的切线斜率为﹣1,则所求切线的方程为y﹣1=﹣(x﹣1),即为x+y﹣2=0.故选:B.2.在正方体ABCD﹣A1B1C1D1中,E、F分别是AA1和CC1的中点,则异面直线B1E与BF所成的角的余弦值为()A. B. C. D.参考答案:A【考点】异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线B1E与BF所成的角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,又E、F分别是AA1和CC1的中点,∴B1(2,2,2),E(2,0,1),B(2,2,0),F(0,2,1),=(0,﹣2,﹣1),=(﹣2,0,1),设异面直线B1E与BF所成的角为θ,则cosθ===,∴异面直线B1E与BF所成的角的余弦值为.故选:A.3.已知双曲线H:﹣=1,斜率为2的动直线l交H于A,B两点,则线段AB的中点在一条定直线上,这条定直线的方程为()A.x+y=0 B.x﹣y=0 C.x+2y=0 D.x﹣2y=0参考答案:B【考点】双曲线的简单性质.【分析】设A(x1,y1),B(x2,y2),AB中点为M(x0,y0).利用中点坐标公式、斜率计算公式、“点差法”即可得出.【解答】解:设A(x1,y1),B(x2,y2),AB中点为M(x0,y0).则,=1,相减可得=,即=2?又=2,y1+y2=2y0,x1+x2=2x0,则2?=2,即x0=y0,即x0﹣y0=0.故线段AB的中点在直线x﹣y=0上.故选:B4.已知复数z满足为虚数单位,则复数为A. B. C. D.参考答案:B试题分析:由题意可得考点:复数运算5.“”是“直线(-2)x+3y+1=0与直线(+2)x+(-2)y-3=0相互垂直”的(
)A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要参考答案:A6.已知直线与抛物线相交于两点,为的焦点,若,则A.
B.
C.
D.参考答案:D略7.直线的倾斜角的大小是(
)A.
B.
C.
D.参考答案:B8.从1,2,3,4,5中不放回地依次取2个数,事件A=“第1次取到的是奇数”,B=“第2次取到的是奇数”,则P(B|A)=()A、
B、
C、
D、参考答案:D略9.已知集合M=x是等腰三角形,N=x是直角三角形,则MN=(
)A、x是等腰直角三角形
B、x是等腰三角形
或直角三角形C、
D、M
参考答案:A略10.5个男生,2个女生排成一排,若女生不能排在两端,但又必须相邻,则不同的排法有()种.A.480 B.720 C.960 D.1440参考答案:C【考点】D3:计数原理的应用.【分析】捆绑法:把2名女生看成1个元素,和5个男生可作6个元素的全排列,去掉其中女生在两端的情形,可得总的方法种数为:﹣,计算可得.【解答】解:把2名女生看成1个元素,和5个男生可作6个元素的全排列,又2名女生的顺序可调整,共有种方法,去掉其中女生在两端的情形共种,故总的方法种数为:﹣=(6×2﹣2×2)=120×8=960故选C【点评】本题考查计数原理的应用,涉及捆绑法和间接法的应用,属中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为______.参考答案:【分析】根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解.【详解】由题意,设,则到直线的距离,故答案为:.【点睛】本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题。12.已知函数若对任意x1≠x2,都有成立,则a的取值范围是
参考答案:(0,]略13.点P是椭圆+=1上一点,F1,F2分别是椭圆的左、右焦点,若|PF1||PF2|=12,则∠F1PF2的大小.参考答案:60°【考点】椭圆的简单性质.【分析】利用椭圆的定义,结合余弦定理,已知条件,转化求解即可.【解答】解:椭圆+=1,可得2a=8,设|PF1|=m,|PF2|=n,可得,化简可得:cos∠F1PF2=∴∠F1PF2=60°故答案为:60°.14.甲乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质检.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为______件.参考答案:180015.若某同学把英语单词“”的字母顺序写错了,则可能出现的错误写法共有
种(以数字作答).参考答案:35916.与直线平行,并且距离等于的直线方程是____________。参考答案:,或解析:设直线为17.已知,则
.参考答案:7略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知四棱锥P﹣ABCD,底面四边形ABCD为菱形,AB=2,BD=2,M,N分别是线段PA,PC的中点.(Ⅰ)求证:MN∥平面ABCD;(Ⅱ)求异面直线MN与BC所成角的大小.参考答案:【考点】异面直线及其所成的角;直线与平面平行的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)连结AC,交BD于点O,由已知得MN∥AC,由此能证明MN∥平面ABCD.(Ⅱ)由已知得∠ACB是异面直线MN与BC所成的角或其补角,由此能求出异面直线MN与BC所成的角.【解答】(Ⅰ)证明:连结AC,交BD于点O,∵M,N分别是PA,PC的中点,∴MN∥AC,∵MN?平面ABCD,AC?平面ABCD,∴MN∥平面ABCD.(Ⅱ)解:由(Ⅰ)知∠ACB是异面直线MN与BC所成的角或其补角,∵四边形ABCD是菱形,AB=2,BO=,∴∠OCB=60°,∴异面直线MN与BC所成的角为60°.【点评】本题考查线面平行的证明,考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.19.已知函数是奇函数.(1)求实数的值;(2)判断函数在上的单调性,并给出证明.参考答案:解:(1)由已知条件得对定义域中的均成立
即
对定义域中的均成立.
即(舍去)或.
所以.
(5分)(2)由(1)得设,当时,.
当时,,即.当时,在上是减函数.
(10分)同理当时,在上是增函数.
(13分)略20.(本小题满分12分)
已知两条直线和,试确定的值,使:(1)与相交于点;(2);(3),且在轴上的截距为。参考答案:(3)要使l1⊥l2,则有m·2+8·m=0,得m=0.
……10分则l1在y轴上的截距为-,由于l1在y轴上的截距为-1,所以-=-1,即n=8.故m=0,n=8.
……12分21.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD是正方形,PD⊥面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)证明:平面BDE⊥平面PBC.参考答案:解:(1)证明:连结交于点,连结为的中点
又为中点为的中位线……4
又面………………6(2),面
………8,又,为中点
面,又面………10面面
………12
22.在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙养殖协议书标准范本
- 工程试车与施工合同条款的互动关系
- 版权许可协议范本
- 出租车驾驶员聘用合同2024年
- 信用担保协议书
- 2024汽车运输合同范本简单简单版汽车维修合同范本
- 2024标准委托借款合同范本
- 北京市车辆过户协议
- 昆明短期劳动合同
- 2024年饭庄转让协议书范本
- 起重机械吊具与索具安全规程(LD48-93)
- 午餐用餐人员登记表
- 无负压供水设备安装施工方案(最新版本)
- GB 26402-2011 食品安全国家标准 食品添加剂 碘酸钾
- 《甲方认质认价确认单》
- 降低住院患者跌倒发生率
- 导游与旅行社签订劳动合同
- 公路管理工作常见五大诉讼风险及防范
- FLUKE-17B型万用表使用说明
- 探析高校图书馆文创产品开发与推广-以清华大学图书馆为例
- 修旧利废实施方案
评论
0/150
提交评论