版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年辽宁省沈阳市第五十六高级中学高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,以此类推,第5个等式为(
) A.24×1×3×5×7=5×6×7×8 B.25×1×3×5×7×9=5×6×7×8×9 C.24×1×3×5×7×9=6×7×8×9×10 D.25×1×3×5×7×9=6×7×8×9×10参考答案:D考点:类比推理.专题:综合题;推理和证明.分析:根据已知可以得出规律,即可得出结论.解答: 解:∵21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,∴第5个等式为25×1×3×5×7×9=6×7×8×9×10故选:D点评:此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.对于等式,要注意分别发现:等式的左边和右边的规律.2.函数的导数是(
)A.
B.
C.
D.参考答案:C略3.函数f(x)=(m2﹣m﹣1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是()A.﹣1 B.2 C.3 D.﹣1或2参考答案:B【考点】4U:幂函数的概念、解析式、定义域、值域.【分析】因为只有y=xα型的函数才是幂函数,所以只有m2﹣m﹣1=1函数f(x)=(m2﹣m﹣1)xm才是幂函数,又函数f(x)=(m2﹣m﹣1)xm在x∈(0,+∞)上为增函数,所以幂指数应大于0.【解答】解:要使函数f(x)=(m2﹣m﹣1)xm是幂函数,且在x∈(0,+∞)上为增函数,则,解得:m=2.故选:B.4.已知等差数列,,,…,的公差为,则,,,…,(为常数,且)是
(
) A.公差为的等差数列 B.公差为的等差数列 C.非等差数列
D.以上都不对参考答案:B5.如图是函数的导函数的图象,则下面判断正确的是(
)A.在区间(-2,1)上是增函数 B.在(1,3)上是减函数C.在(4,5)上是增函数 D.当时,取极大值参考答案:C根据原函数与导函数的关系,由导函数的图象可知的单调性如下:在上为减函数,在(0,2)上为增函数,在(2,4)上为减函数,在(4,5)上为增函数,在的左侧为负,右侧为正,故在处取极小值,结合选项,只有选项C正确。6.直线,当时,此直线必不过()A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:D略7.如果命题p是假命题,命题q是真命题,则下列错误的是(
)A.“p且q”是假命题 B.“p或q”是真命题C.“非p”是真命题 D.“非q”是真命题参考答案:D8.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10 B.20 C.30 D.40参考答案:B【考点】直线与圆相交的性质.【专题】压轴题.【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|?|BD|=×10×4=20.故选B【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.9.已知等差数列的公差,且,记前项之和,则(
).A.
B.
C.
D.参考答案:C
解析:,得,而.10.在三棱锥S-ABC中,,二面角的大小为60°,则三棱锥S-ABC外接球的表面积是(
)A. B. C. D.参考答案:D【分析】取的中点为,由二面角平面角的定义可知;根据球的性质可知若和中心分别为,则平面,平面,根据已知的长度关系可求得,在直角三角形中利用勾股定理可求得球的半径,代入球的表面积公式可得结果.【详解】取的中点为由和都是正三角形,得,则是二面角的平面角,即设球心为,和中心分别为由球的性质可知:平面,平面又,
,外接球半径:外接球的表面积为:本题正确选项:D【点睛】本题考查三棱锥外接球的表面积的求解问题,关键是能够利用球的性质确定球心的大致位置,从而可利用勾股定理求解出球的半径.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=lnx,g(x)=x2﹣2x,当x>2时k(x﹣2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为
.参考答案:5【考点】利用导数求闭区间上函数的最值.【分析】k(x﹣2)<xf(x)+2g′(x)+3恒成立,等价于k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,分离参数,从而可转化为求函数的最小值问题,利用导数即可求得,即可求实数a的取值范围.【解答】解:因为当x>2时,不等式k(x﹣2)<xf(x)+2g′(x)+3恒成立,即k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,亦即k<=+2对一切x∈(2,+∞)恒成立,所以不等式转化为k<+2对任意x>2恒成立.设p(x)=+2,则p′(x)=,令r(x)=x﹣2lnx﹣5(x>2),则r′(x)=1﹣=>0,所以r(x)在(2,+∞)上单调递增.因为r(9)=4(1﹣ln3)<0,r(10)=5﹣2ln10>0,所以r(x)=0在(2,+∞)上存在唯一实根x0,且满足x0∈(9,10),当2<x<x0时,r(x)<0,即p′(x)<0;当x>x0时,r(x)>0,即p′(x)>0.所以函数p(x)在(2,x0)上单调递减,在(x0,+∞)上单调递增,又r(x0)=x0﹣2lnx0﹣5=0,所以2lnx0=x0﹣5.所以[p(x)]min=p(x0)=+2=+2∈(5,6),所以k<[p(x)]min∈(5,6),故整数k的最大值是5.故答案为:5.12.若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.参考答案:
13.ABCD-A1B1C1D1为平行六面体,设=a,=b,=c,E、F分别是AD1、BD的中点,则=
.(用向量abc表示)参考答案:a-c14.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于
.参考答案:15.已知向量经过矩阵变换后得到向量,若向量与向量关于直线y=x对称,则a+b=
.参考答案:116.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,四棱锥A﹣BB1D1D的体积为6cm3,则AA1=.
参考答案:2cm考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由已知得BD=3,设四棱锥A﹣BB1D1D的高为h,则,再由四棱锥A﹣BB1D1D的体积为6,能求出AA1.解答:解:∵在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,∴BD==3,设四棱锥A﹣BB1D1D的高为h,则,解得h===,∵四棱锥A﹣BB1D1D的体积为6,∴,解得AA1=2(cm),故答案为:2cm.点评:本题考查长方体的高的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.17.已知F是抛物线C:的焦点,A、B是C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于____.参考答案:2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)设命题:对任意实数,不等式恒成立;命题:曲线是双曲线.(1)若命题为真命题,求实数的取值范围;(2)若命题“”为真命题,且“”为假命题,求实数的取值范围.参考答案:解:(1)曲线是双曲线,∴或
即命题为真命题时实数的取值范围是或
………3分(2)若命题真,即对任意实数,不等式恒成立。,∴
…………………6分∨为真命题,∧为假命题,即P真Q假,或P假Q真,如果P真Q假,则有,∴无解
………9分
如果P假Q真,则有.∴或………12分所以实数的取值范围为或……………14分略19.在三角形ABC中,角A,B,C所对边分别为a,b,c,满足.(1)求角A;(2)若,,求三角形ABC的面积.参考答案:(1)(2)20.如图,四棱锥P﹣ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)证明:平面BDE⊥平面PBC.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结AC,设AC与BD交于O点,连结EO,易证EO为△PAC的中位线,从而OE∥PA,再利用线面平行的判断定理即可证得PA∥平面BDE;(2)依题意,易证DE⊥底面PBC,再利用面面垂直的判断定理即可证得平面BDE⊥平面PBC.【解答】证明:(1)连结AC,设AC与BD交于O点,连结EO.∵底面ABCD是正方形,∴O为AC的中点,又E为PC的中点,∴OE∥PA,∵OE?平面BDE,PA?平面BDE,∴PA∥平面BDE.…(2)∵PD=DC,E是PC的中点,∴DE⊥PC.∵PD⊥底面ABCD,∴PD⊥AD.又由于AD⊥CD,PD∩CD=D,故AD⊥底面PCD,所以有AD⊥DE.又由题意得AD∥BC,故BC⊥DE.于是,由BC∩PC=C,DE⊥PC,BC⊥DE可得DE⊥底面PBC.故可得平面BDE⊥平面PBC.…21.假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标操作,停止射击,否则就一直独立地射击至子弹用完.现有5发子弹,设耗用子弹数为随机变量X.(1)若该士兵射击两次,求至少射中一次目标的概率;(2)求随机变量X的概率分布与数学期望.参考答案:解:(1)该士兵射击两次,至少射中一次目标的概率为.(2)耗用子弹数的所有可能取值为2,3,4,5.当时,表示射击两次,且连续击中目标,;当时,表示射击三次,第一次未击中目标,且第二次和第三次连续击中目标,;当时,表示射击四次,第二次未击中目标,且第三次和第四次连续击中目标,;当时,表示射击五次,均未击中目标,或只击中一次目标,或击中两次目标前四次击中不连续两次或前四次击中一次且第五次击中,或击中三次第五次击中且前四次无连续击中。;随机变量的数学期望.
22.已知a,b,c分别为△ABC内角A,B,C的对边,向量,且。(1)求角C;(2)若,△ABC的面积为,求△ABC内切圆的半径。参考答案:(1)(2)【分析】(1)由得出,利用正弦定理边角互
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国虚拟现实VR行业营销创新战略制定与实施研究报告
- 2025-2030年中国指纹识别芯片行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国玩具行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国酒店行业开拓第二增长曲线战略制定与实施研究报告
- 2024年汽车智能座舱投融资研究白皮书
- 织物强力标准
- 关于“卧室装饰灯”的调研问卷
- 福建省2024届高三下学期6月模拟英语试题
- 收购某供水特许经营项目SPV公司股权项目可行性研究报告
- 甲流防控知识培训课件
- 2022神经外科手术分级目录
- 电气传动自动控制系统课程设计报告书
- T-CERDS 3-2022 企业ESG评价体系
- 落实国家组织药品集中采购使用检测和应急预案
- 报价经理岗位职责
- 装饰装修施工及担保合同
- 《广东省普通高中学生档案》模板
- 公司章程范本下载
- GB/T 41120-2021无损检测非铁磁性金属材料脉冲涡流检测
- 青年心理学第五讲(恋爱心理)
- ITV系列电气比例阀英文说明书
评论
0/150
提交评论