2022年山西省太原市西墕中学高二数学文下学期摸底试题含解析_第1页
2022年山西省太原市西墕中学高二数学文下学期摸底试题含解析_第2页
2022年山西省太原市西墕中学高二数学文下学期摸底试题含解析_第3页
2022年山西省太原市西墕中学高二数学文下学期摸底试题含解析_第4页
2022年山西省太原市西墕中学高二数学文下学期摸底试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山西省太原市西墕中学高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用0,1,2,3,4排成没有重复数字的五位数,要求偶数相邻,奇数也相邻,则这样的五位数的个数是

A、20

B、24

C、30

D、36参考答案:A略2.已知a、b、c成等比数列,则二次函数f(x)=ax2+bx+c的图象与x轴交点个数是(

A.0B.1

C.2D.0或1参考答案:A略3.已知、、分别是的三个内角、、所对的边,若A=45°,B=60°,,则等于(

A.

B.

C.

D.参考答案:A略4.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是()A.[0,] B.(0,) C.[﹣,] D.(0,]参考答案:A【考点】直线与圆的位置关系.【分析】求出圆的标准方程,根据条件确定圆心C到直线y=kx﹣2的距离d≤R+1=2,利用圆心到直线的距离公式进行求解即可.【解答】解:圆的标准方程为(x﹣4)2+y2=1,则圆心C坐标为(4,0),半径R=1,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则等价为圆心C到直线y=kx﹣2的距离d≤R+1=2,即圆心到直线kx﹣y﹣2=0的距离d=,即|2k﹣1|≤,平方得3k2﹣4k≤0,解得0≤k≤,故选:A5.在上定义运算,,则满足的实数的取值范围为(

) A.

B.

C.D.参考答案:B6.已知全集U=R,集合则等于(

) A.B. C.D.参考答案:D略7.已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A. B.3 C.m D.3m参考答案:A【考点】双曲线的简单性质.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.8.设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是(

)A.y2=﹣8x B.y2=8x C.y2=﹣4x D.y2=4x参考答案:B【考点】抛物线的标准方程.【专题】计算题.【分析】根据准线方程求得p,则抛物线的标准方程可得.【解答】解:∵准线方程为x=﹣2∴=2∴p=4∴抛物线的方程为y2=8x故选B【点评】本题主要考查了抛物线的标准方程.考查了考生对抛物线基础知识的掌握.9.已知双曲线的两条渐近线与抛物线的准线分别交于,两点,为坐标原点.若双曲线的离心率为,的面积为,则(

)A.

B.

C.

D.参考答案:由已知得,,,渐近线方程为.而抛物线的准线方程为,于是,,从而的面积为,.选C.10.函数的图象大致是(

)A. B.C. D.参考答案:D【分析】根据f(x)的奇偶性及特殊函数值判断.【详解】∵f(﹣x)=-f(x),故f(x)是奇函数,图象关于原点对称,排除A、B;又当x=1时,f(1)=0,当x>1时,f(x)>0,∴排除C,故选:D.【点睛】本题考查了函数图像的识别,考查了函数奇偶性的判断及应用,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在区间上随机取一个数a,则函数有零点的概率为

.参考答案:略12.执行下面的程序框图,如果输入的,则输出的n=

.参考答案:6执行如图所示的程序框图:第一次循环:,满足条件;第二次循环:,满足条件;第三次循环:,满足条件;第四次循环:,满足条件;第五次循环:,满足条件;第六次循环:,不满足条件,推出循环,此时输出;

13.P为曲线C1:y=ex上一点,Q为曲线C2:y=lnx上一点,则|PQ|的最小值为.参考答案:【分析】考虑到两曲线关于直线y=x对称,求丨PQ丨的最小值可转化为求P到直线y=x的最小距离,再利用导数的几何意义,求曲线上斜率为1的切线方程,从而得此距离.【解答】解:∵曲线y=ex与曲线y=lnx互为反函数,其图象关于y=x对称,故可先求点P到直线y=x的最近距离d,设曲线y=ex上斜率为1的切线为y=x+b,∵y′=ex,由ex=1,得x=0,故切点坐标为(0,1),即b=1,∴d==,∴丨PQ丨的最小值为2d=2×=.故答案为:.14.某班收集了50位同学的身高数据,每一个学生的性别与其身高是否高于或低于中位数的列联表如下:

高于中位数低于中位数总计男20727女101323总计302050为了检验性别是否与身高有关系,根据表中的数据,得到k2的观测值k=≈4.84,因为K2≥3.841,所以在犯错误的概率不超过_________的前提下认为性别与身高有关系.参考答案:略15.对任意非零实数a、b,若a?b的运算原理如图程序框图所示,则3?2=

.参考答案:2【考点】EF:程序框图.【分析】根据a?b的运算原理知a=3,b=2,通过程序框图知须执行,故把值代入求解.【解答】解:由题意知,a=3,b=2;再由程序框图得,3≤2不成立,故执行,得到3?2==2.故答案为:2.16.行列式中元素8的代数余子式为______________.参考答案:=617.在如图的矩形长条中,涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方法共有_________种

参考答案:30略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)我们已经学过了等差数列,你是否想到过有没有等和数列呢?(1)类比“等差数列”给出“等和数列”的定义;(2)探索等和数列{an}的奇数项与偶数项各有什么特点?并加以说明.参考答案:(1)等差数列的定义是:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列;由此类比,得出等和数列的定义是:如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列;(2)由(1)知,an+an+1=an+1+an+2,∴an=an+2;∴等和数列的奇数项相等,偶数项也相等.19.(本小题12分)如图,在三棱锥中,已知△是正三角形,平面,,为的中点,在棱上,且,(1)求证:平面;(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;(3)求平面与平面所成的锐二面角的余弦值.参考答案:(1)取AC的中点H,因为AB=BC,BH⊥AC.因为AF=3FC,F为CH的中点.而E为BC的中点,EF∥BH.则EF⊥AC.由于△BCD是正三角形,DE⊥BC.因为AB⊥平面BCD,AB⊥DE.因为AB∩BC=B,DE⊥平面ABC.DE⊥AC.而DE∩EF=E,AC⊥平面DEF(2)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.所以当CF=CN时,MN∥OF.所以CN=(3)20.一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球个数不少于白球个数的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7的取法

参考答案:(1)分三类:第一类有4个红球,则有种取法;第二类有3个红球,则有种取法;第三类有2个红球,则有种取法;各根据加法原理共有1+24+90=115种不同的取法.(2)若总分不少于7,则可以取4红1白,或3红2白,或2红3白,共3类,取法总数为种不同的取法.

略21.如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.(Ⅰ)当点为的中点时,试判断直线与平面的关系,并说明理由;(Ⅱ)求证:.参考答案:解:(Ⅰ)当点为CD的中点时,平面PAC.

理由如下:点分别为,的中点,.

,,平面PAC.

(Ⅱ),,

.

又是矩形,,

,.

,.

,点是的中点,

.

又,

.

.

略22.已知椭圆C:(a>b>0)的离心率,左、右焦点分别为F1、F2,点满足:F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于点A(2,0)、M、N,且∠NF2F1=∠MF2A,求k的取值范围.参考答案:【考点】KH:直线与圆锥曲线的综合问题.【分析】(1)解法一:由椭圆C的离心率和点F2在线段PF1的中垂线上知|F1F2|=|PF2|,由此推出,从而可求出椭圆C的方程.解法二:椭圆C的离心率,得,先求得线段PF1的中点为D的坐标,根据线段PF1的中垂线过点F2,利用,得出关于c的方程求出c值,最后求得a,b写出椭圆方程即可;(2)设直线l的方程为y=k(x﹣2),,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用∠NF2F1=∠MF2A得出的斜率关系即可求得k的取值范围.【解答】解:(1)解法一:椭圆C的离心率,得,其中椭圆C的左、右焦点分别为F1(﹣c,0),、F2(c,0),又点F2在线段PF1的中垂线上,∴F1F2=PF2,∴解得c=1,a2=2,b2=1,∴椭圆C的方程为.…解法二:椭圆C的离心率,得,其中椭圆C的左、右焦点分别为F1(﹣c,0),、F2(c,0),设线段PF1的中点为D,∵F1(﹣c,0),,∴,又线段PF1的中垂线过点F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论