版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年天津第六十一中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.
已知结论:在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则AG:GD=2:1,若把该结论推广到空间中,则有结论:在棱长都相等的四面体ABCD中,若三角形BCD的中心为M,四面体内部一点O到各面的距离都相等,则AO:OM=(
)A.1
B.2
C.3
D.4参考答案:C2.在△ABC中,=3,BC=,=4,则边AC上的高为 A.
B.
C.
D.参考答案:B略3.在平面直角坐标系中,不等式组,表示的平面区域的面积是(
)A.
B.4
C.2
D.2参考答案:B略4.点(-1,2)关于直线的对称点的坐标是(
)A.
B.
C.
D.参考答案:D略5.在空间直角坐标系O-xyz中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到正视图可以为参考答案:A6.过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若点M在以AB为直径的圆的内部,则此双曲线的离心率e的取值范围为(
)A.(,+∞)
B.(1,)
C.(2,+∞)
D.(1,2)参考答案:C略7.在ABC中,若sin(A+B)sin(A–B)=sin2C,则ABC的形状是
(
)A
锐角三角形
B
直角三角形
C
钝角三角形
D
等腰三角形参考答案:B略8.已知,则
(
)(A)
(B)
(C)
(D)参考答案:D
==9.正方体的内切球和外接球的半径之比为(
)A、
B、
C、
D、参考答案:D略10.“x>a”是“x>﹣1”成立的充分不必要条件()A.a的值可以是﹣8 B.a的值可以是C.a的值可以是﹣1 D.a的值可以是﹣3参考答案:B【考点】充要条件.【分析】“x>a”是“成立的充分不必要条件:即x>a推出x>﹣1,x>﹣1不能推出x>a,从而得到a的范围为a>﹣1,对照选择支即可求解【解答】解:∵“x>a”是“x>﹣1”成立的充分不必要条件∴x>a推出x>﹣1,x>﹣1不能推出x>a∴a>﹣1∵{﹣8,﹣,﹣1,﹣3}中只有﹣>﹣1∴a的值可以是故选B二、填空题:本大题共7小题,每小题4分,共28分11.如图,线段AB=6,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D。设CP=x,CPD的面积为,则的最大值为
▲
。参考答案:12.
已知命题,则为
;参考答案:略13.抛物线的焦点坐标是___
,w.w参考答案:14.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上的一点,则的面积为______.参考答案:36设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,,是与的交点,又轴,,,又点在准线上,设过点的垂线与交于点,,.故答案为36.15.已知中,,,则的面积为_______参考答案:6略16.在平面直角坐标系xOy中,过A(﹣1,0),B(1,2)两点直线的倾斜角为
.参考答案:45°【考点】直线的倾斜角.【分析】求出过A(﹣1,0),B(1,2)两点直线的斜率,根据倾斜角与斜率的关系求出直线的倾斜角.【解答】解:∵A(﹣1,0),B(1,2),∴kAB==1,∴过A(﹣1,0),B(1,2)两点直线的倾斜角为45°,故答案为45°.17.(2010·安徽巢湖市质检)设a=sinxdx,则二项式(a-)6展开式的常数项是()A.160
B.20
C.-20
D.-160参考答案:D略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.
参考答案:【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AC的中点P,连接DP,证明DP⊥AC,∠EDC=90°,ED⊥DC;利用平面与平面垂直的性质证明DE⊥平面BCD;(2)说明G为EC的中点,求出B到DC的距离h,说明到DC的距离h就是三棱锥B﹣DEG的高.利用,即可求三棱锥B﹣DEG的体积.【解答】解:(1)取AC的中点P,连接DP,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以∠A=30°,△ADC是等腰三角形,所以DP⊥AC,DP=,∠DCP=30°,∠PDC=60°,又点E在线段AC上,CE=4.所以AE=2,EP=1,所以∠EDP=30°,∴∠EDC=90°,∴ED⊥DC;∵将△BCD沿CD折起,使得平面BCD⊥平面ACD,平面BDC∩平面EDC=DC∴DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以BD=,DC=,所以B到DC的距离h===,因为平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,所以B到DC的距离h就是三棱锥B﹣DEG的高.三棱锥B﹣DEG的体积:V====.19.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2且|F1F2|=2,点P(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,若AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.参考答案:20.在数列
(1)求证:数列是等比数列.
(2)求数列参考答案:解析:(I)令,
(2)由(1)可知
即
…………9分
所以
…………12分21.数列是递增的等比数列,且(1)求数列的通项公式;(2)若,求证:数列是等差数列.参考答案:(1)
(2),
所以所以数列是等差数列。22.已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E、F分别是AB、AP的中点.(1)求证:AC⊥EF;(2)求二面角F﹣OE﹣A的余弦值.参考答案:【考点】MT:二面角的平面角及求法;LX:直线与平面垂直的性质.【分析】(1)通过建立空间直角坐标系,利用EF与AO的方向向量的数量积等于0,即可证明垂直;(2)利用两个平面的法向量的夹角即可得到二面角的余弦值.【解答】(1)证明:由ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,可知:△OAB是等腰直角三角形,∵AB=2CD=2,E是AB的中点,∴OE=EA=EB=,可得OA=OB=2.∵PO⊥底面ABCD,∴PO⊥OA,PO⊥OB.又OA⊥OB.∴可以建立如图所示的空间直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西京学院《微机原理与接口技术》2022-2023学年期末试卷
- 西南林业大学《地理信息系统原理与应用》2022-2023学年第一学期期末试卷
- 从事专业与所学专业不一致专业技术人员申报职称岗位任职合格证明附件6
- 西京学院《电机学实验》2021-2022学年期末试卷
- 西华师范大学《中学思想政治学科教学论》2021-2022学年第一学期期末试卷
- 西华师范大学《音乐作品分析与写作》2023-2024学年第一学期期末试卷
- 西华师范大学《文艺作品演播》2022-2023学年第一学期期末试卷
- 2024-2025学年高中物理举一反三系列专题4.1 普朗克黑体辐射理论(含答案)
- 房地产金融与投资概论教学课件第二章房地产抵押贷款
- 匆匆 朱自清课件
- 跨平台游戏互操作性和可移植性
- 重庆市綦江县彩虹桥整体垮塌事故分析处理报告
- 网课智慧树知道《文书学(四川大学)》章节测试答案
- 人教版 九年级上册音乐 第五单元 大红枣儿甜又香 教案
- 在线网课知道知慧《灾害学(山东科大)》单元测试答案
- 2024年宁波市奉化区文化旅游集团有限公司招聘笔试冲刺题(带答案解析)
- 统编版教材一至六年级日积月累
- 2024年新修订公司法知识题库及答案
- 台球厅桌球俱乐部创业计划书课件模板
- 口腔科医疗污水处置登记表
- 习近平总书记教育重要论述讲义智慧树知到期末考试答案章节答案2024年西南大学
评论
0/150
提交评论