浙江省义乌地区2024年中考数学四模试卷含解析_第1页
浙江省义乌地区2024年中考数学四模试卷含解析_第2页
浙江省义乌地区2024年中考数学四模试卷含解析_第3页
浙江省义乌地区2024年中考数学四模试卷含解析_第4页
浙江省义乌地区2024年中考数学四模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省义乌地区2024年中考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30° B.60° C.50° D.40°2.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是()A. B. C. D.3.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.4.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个5.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是A. B.C. D.6.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取()A.11; B.6; C.3; D.1.7.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.168.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值29.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,) B.(,0) C.(0,2) D.(2,0)10.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁11.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.6 B.6 C.3 D.312.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.14.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.15.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.16.已知a+b=1,那么a2-b2+2b=________.17.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.18.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.20.(6分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.21.(6分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.22.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.(1)直接写出关于原点的中心对称图形各顶点坐标:________________________;(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.23.(8分)如图,菱形中,分别是边的中点.求证:.24.(10分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.25.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.26.(12分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.27.(12分)如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AB=DF.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.2、D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面积是:,故选D.3、A【解析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故选A.4、B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.5、B【解析】

根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】二次函数y=a(x﹣h)2+k(a<0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.6、D【解析】∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,∴上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.7、C【解析】

根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,

∴x1+x2=2,x1•x2=-5,

∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.

故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-,x1•x2=.8、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,

由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2|==,∴m=1时,dmin=2.故选D.9、A【解析】

直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.【详解】如图,连结AC,CB.

依△AOC∽△COB的结论可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或−(负数舍去),故C点的坐标为(0,).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.10、A【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.11、A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长.解:如图所示,设OA与BC相交于D点.∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故选A.点睛:本题主要考查垂径定理和勾股定理.解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.12、C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.14、2n+1.【解析】

解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.15、1【解析】

利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.16、1【解析】

解:∵a+b=1,∴原式=故答案为1.【点睛】本题考查的是平方差公式的灵活运用.17、【解析】

科学记数法的表示形式为ax10n的形式,其中1≤lal<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000872=故答案为:【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18、【解析】

设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析(2)见解析【解析】

(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、(1)150;(2)详见解析;(3).【解析】

(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.【详解】解:(1)15÷10%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.【解析】

(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,则FO=,故图中阴影部分的面积为:.【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.22、(1),,;(2)作图见解析,面积,.【解析】

(1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、、的坐标;(2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可.再利用弧长公式求出点C所经过的路径长.【详解】解:(1)由在平面直角坐标系中的位置可得:,,,∵与关于原点对称,∴,,(2)如图所示,即为所求,∵,,∴,∴,∵,∴在旋转过程中所扫过的面积:点所经过的路径:.【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.23、证明见解析.【解析】

根据菱形的性质,先证明△ABE≌△ADF,即可得解.【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵点E,F分别是BC,CD边的中点,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.24、(1)30°;(2)20°;【解析】

(1)利用圆切线的性质求解;(2)连接OQ,利用圆的切线性质及角之间的关系求解。【详解】(1)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【点睛】此题主要考查圆的切线的性质及圆中集合问题的综合运等.25、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解析】

(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴=1,∴这组数据的中位数是1.【点睛】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.26、(1)(2)(3).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论