![2023-2024学年湖南省衡阳市中考数学模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M01/32/39/wKhkFmYTMt6AENagAAJ9V0PEWNc833.jpg)
![2023-2024学年湖南省衡阳市中考数学模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M01/32/39/wKhkFmYTMt6AENagAAJ9V0PEWNc8332.jpg)
![2023-2024学年湖南省衡阳市中考数学模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M01/32/39/wKhkFmYTMt6AENagAAJ9V0PEWNc8333.jpg)
![2023-2024学年湖南省衡阳市中考数学模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M01/32/39/wKhkFmYTMt6AENagAAJ9V0PEWNc8334.jpg)
![2023-2024学年湖南省衡阳市中考数学模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M01/32/39/wKhkFmYTMt6AENagAAJ9V0PEWNc8335.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省衡阳市中考数学模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<12.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲3.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm21.522.022.523.023.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数 B.加权平均数 C.众数 D.中位数4.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A. B. C. D.5.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣76.下列代数运算正确的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x57.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补8.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(
)A.15
B.12
C.9
D.69.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°10.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣311.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A. B. C. D.12.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2B.3C.4D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.14.计算(﹣a)3•a2的结果等于_____.15.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.16.不等式组的所有整数解的积为__________.17.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.18.如图,已知,要使,还需添加一个条件,则可以添加的条件是.(只写一个即可,不需要添加辅助线)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?20.(6分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).21.(6分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=OD,求a、b的值;若BC∥AE,求BC的长.22.(8分)如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求BODO23.(8分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.24.(10分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?25.(10分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.26.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.27.(12分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.2、A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.图3与图1中,三个三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故选A.点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.3、C【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.4、D【解析】
由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.5、C【解析】
先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.6、D【解析】
分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.【详解】解:A.(x+1)2=x2+2x+1,故A错误;B.(x3)2=x6,故B错误;C.(2x)2=4x2,故C错误.D.x3•x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.7、C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.8、A【解析】
根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A9、B【解析】
利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.10、A【解析】分析:详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.11、D【解析】
根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是=;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12、C【解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.14、﹣a5【解析】
根据幂的乘方和积的乘方运算法则计算即可.【详解】解:(-a)3•a2=-a3•a2=-a3+2=-a5.故答案为:-a5.【点睛】本题考查了幂的乘方和积的乘方运算.15、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16、1【解析】
解:,解不等式①得:,解不等式②得:,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.17、k>3【解析】分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,∴解得,k>3.故答案是:k>3.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.18、可添∠ABD=∠CBD或AD=CD.【解析】
由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=100x+17360;(2)3种方案:A型车21辆,B型车41辆最省钱.【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;
(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题.【详解】(1)由题意:y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,又∵x为整数,∴x的取值范围为21≤x≤62的整数;(2)由题意100x+17360≤19720,∴x≤23.6,∴21≤x≤23,∴共有3种租车方案,x=21时,y有最小值=1.即租租A型车21辆,B型车41辆最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.20、(1)60;(2)【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=30.在Rt△ACD中,∵∠C=60°,AD=30,∴tanC=,∴CD==10,∴BC=BD+CD=30+10.答:该船与B港口之间的距离CB的长为(30+10)海里.21、(1)a=,b=2;(2)BC=.【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:,b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF=,在Rt△ACE中,tan∠AEC=,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.考点:反比例函数与一次函数的交点问题.22、3【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分别求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO23、(1)AD=DE;(2)AD=DE,证明见解析;(3).【解析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.24、(Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:则y与x的函数关系式为.(Ⅱ),解得.∴至少要购进20件甲商品.,∵,∴y随着x的增大而减小∴当时,有最大值,.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.25、,.【解析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式当时原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26、(1)详见解析;(2);(3)【解析】
(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人借款协议财产抵押
- 城市亮化与景观设计方案
- 智能语音设备销售及服务合同
- 影视制作服务中版权纠纷与免责条款的协议
- 惠州学院教师进修协议书
- 意向租赁合同年
- 网络科技业物联网技术应用与发展规划方案设计
- 丧葬礼仪服务契约合同书
- 农业技术创新与研发方案
- 生物制药研发项目投资合同
- 【人教版化学】必修1 知识点默写小纸条(答案背诵版)
- 浙江省绍兴市各县区乡镇行政村村庄村名居民村民委员会明细
- 下肢深静脉血栓形成静脉置管溶栓术后-用药及出血观察护理-PPT
- 16万吨_年液化气综合利用装置废酸环保综合利用项目环境报告书
- T∕CAEPI 43-2022 电絮凝法污水处理技术规程
- 农村商业银行合规风险管理暂行办法
- 品牌简单之道讲义
- 人教版八年级数学第二学期教学计划+教学进度表
- 更高更妙的物理《摩擦角与自锁现象》精讲
- 水转印检验规范(吉利)
- 鲁教版五四制七年级上册英语单元题
评论
0/150
提交评论