




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
AdvertisingResearch:Instructor’sManual
Copyright©2012PearsonEducation,Inc.publishingasPrenticeHall
AdvertisingResearch:Instructor’sManual
Copyright©2012PearsonEducation,Inc.publishingasPrenticeHall
PAGE
16.QuantitativeDataAnalysis:InferentialStatistics
ChapterGoals
Afterreadingthischapterstudentsshouldhaveabetterunderstandingof:
• whatstatisticalsignificanceisandwhyitisimportant.
• howtoevaluatedifferentlevelsofresponsefromasinglegroupofindividuals.
• howtoevaluatethemeaningfulnessofdifferencesinlevelsofresponseamongtwoormoregroupsofindividuals.
• howtodeterminethesimultaneousandindependentinfluenceoftwoormoreexperimentalfactors.
• howtodeterminetherelationshipbetweentwoormoremeasures.NotestotheInstructor
TheChapterLectureprovidesaguidetokeytopicsandcontent.TwofilesofPowerPointslidesareprovided:davis_adresearch_ch16(part1).pptanddavis_adresearch_ch16(part2).ppt.
Levelsofsignificanceforstatisticaltestsareobtainedthroughonlinecalculators.Linkstoseveralexamplesofthesecalculatorsareprovidedwithintheslides.
ChapterLecture
Part1
Slides
Slide16-
2
Researcherstypicallyuseinferentialstatisticstoanswertwoimportantquestions:
• HowmuchconfidencecanIhavethatthedifferencebetweentwoormoremeasuresisrealandmeaningful,andnotjust
theresultofrandomfluxuationinthedata?
• HowmuchconfidencecanIhavethattherelationshipIam
seeingbetweentwoormoremeasuresisrealandmeaning-ful?
Statisticalsignificancehelpsanswerbothquestions.
I.StatisticalSignificance
Slide16-
3
Slide16-
4
Slide16-
5
Slide16-
6
Slide16-
7
Expressedasanumberbetween0and1.Alpha(a)representsprobabilitythatdifferenceisduetochance.Alowernumberreflectsmoreconfidencethatthedifferenceisarealone.Oncecalculated,foreaseofinterpretation,(a)isturnedintoapercentage.
• Whena=.1,forexample,thelevelofchanceis10%,soresearchercanbe90%confidentthattheresultsarereal.
When(a)is5%orlessresearcherstypicallyclaimthatfindingsarestatisticallysignificantandasaresultthatobserveddifferencesarereal.
ConsidertheexampledescribedinSlide16-5.DatashowninSlide16-6.Interpretedasfollows:
ThoseexposedtotheMustangalwayshavemorepositivescores.AresearcherlookingjustatthesescoresmightconcludethatMustang’spresenceinthegameachievedsuccessinallfouroftheareasmeasured,andasaresult,gameplacementisa
viableoptionifFordwantstochangeabroadrangeofattitudestowardMustang.Butwouldthisconclusionbecorrect?
ThetableshowninSlide16-7addsthealphavaluetoeachmeasure.
LevelsofstatisticalsignificanceshowthattheresearchercanonlyhaveconfidencethatgameplacementhelpedtochangeperceptionsofMustangasapowercar.Onlythismeasurehadan(a)levelat.05orless.Thechangesintheotherareaswerepositivebutdidnotreachthelevelofstatisticalsignificance.
Thus,basedontheresults,amorecorrectconclusionmighthave
beenthat:
PlacementinthegameworkswelltofosterpowercarperceptionsofMustangandshowssomesuccessinchangingattitudestowardMustanginotherareas.IfFordwantstofocusonimprovingpowercarperceptionsthengameplacementisanexcellentoption.IfFordwantstousegameplaytoimprove
attitudesintheremainingthreeareasthenwaysshouldbeexploredtodeterminehowcurrentMustangperceptionscanbestrengthenedwithspecificfocusonthethreeareasthatshowednearstatisticalsignificance.
II.MakingJudgmentsAboutASingleMeasureFromOneSample
A.ComparingaSampleAveragetoAPopulationAverage
Oneoftwotestscanbeusedtocompareasamplemeantoapopulationmean.Thetestselectedisdeterminedbysamplesize.Themathunderlyingbothtestsisquitesimpleandrequiresonlyminimalmanualcomputation.
Slide16-
8
Slide16-
9
Slide16-
10
Slide16-
11
1.LargeSampleSize
Alargesamplesizeisgenerallyconsideredtobe30ormoreindividuals.ImagineMcDonald'stestseveryproposedcommercialbeforeitisproduced.
Overtime,severalhundredtestsareconducted.McDonald'scanusepopulationofpriorteststoevaluateperformanceofproposedcommercials.Onlycommercialsthataresignificantlybetterthanaverageofpriorcommercialsonthekeymeasureof“purchaseintent”areproduced.
McDonald'stestsnewcommercial.ThedataneededtocalculatewhetherornotcommercialissignificantlybetterthantheaverageofpastcommercialsisshowninSlide16-9.
Acomparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:
1.Subtractpopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Resultis.8(3.9-3.1=.8).
2.Dividepopulationstandarddeviationbysquarerootofsamplesize.Resultis.16.(Thesquarerootof100is10,sothecomputationis1.6/10=.16.)
3.DividenumberobtainedinStep1bythenumberobtainedin
Step2.Resultis5.00(calculatedas.8/.16).
ThevalueobtainedisaZ-score,whichcanbeinterpretedinoneofthreeways,allofwhichreachthesameconclusion.First,astatisticaltablecanbeused.Second,youcancompareZ-scoreobtainedtotheZ-scorerequiredfor(a)at1%and5%levelsofconfidence.Third,youcanuseanonlinecalculator.AllthreeshowthataZ-scoreof5resultsinaconfidencelevelofmuchlessthan.001,
indicatingthatthereisactuallylessthan1chancein1,000thatresultsareduetochance.ThenewMcDonald’scommercialshouldbeproduced.
2.SmallSampleSize
Slide16-
12
Slide16-
13
Slide16-
14
Slide16-
15
Slide16-
16
Whensamplesizeislessthan30,t-test,isusedtocomparetestmeantopopulationmean.T-testisverysimilartoZtestinapproach.However,whiletheZtestusesthepopulationstandarddeviationt-testutilizesthesamplestandarddeviation.SampledatashowninSlide16-12.
Thisisthesamesituationasbefore,onlythesamplesizeislessthan30.Comparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:
1.Subtractthepopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Inthisexampletheresultis-.4(3.2-
3.6=-.4).
2. Dividethetestsamplestandarddeviationbythesquarerootofthesamplesize.Inthisexampletheresultis.3(Thesquarerootof25is5,sothecomputationis1.5/5=.3.)
3.DividethenumberisobtainedinStep1bythenumberobtainedinStep2.Inthisexampletheresultis-1.33(calculatedas-.4/
.3).
Interpretationoft-valueusesdegreesoffreedomwhichisthenumberinyoursampleminusone(inthisexample24).Onceknown,thestatisticaltableoronlinecalculatorcanbeused.At-scoreof-1.33and24degreesoffreedomgivessignificancevalueof.196.Thislevelofsignificancefailstoreachthetraditionalcut-offvalues(.01or.05)andindicatesthatresearchercannotbeconfidentthatdifferencebetweentestcommercialandtheaverageofallpriorcommercialsis“real”andnotduetochance.McDonald'scannotconfidentlyconcludethattestcommercialisdifferent(eitherbetterorworse)thanaverageofpriorcommercials.
B.ComparingaSampleProportiontoaPopulationProportion
ThinkaboutMcDonald'stryingtoassessimpactofproposedcommercialsonconsumers’intentiontoeatatMcDonald's.Afterseeingthetestcommercial,respondentsasked:"Thenexttimeyougotoafastfoodrestaurantwherewillyougo?"Thepercentageofrespondentsanswering"McDonald's"istallied.
McDonald'scancomparetheproportionofrespondentssaying"McDonald's"afterseeingatestcommercialtotheaveragepercentagesaying"McDonald's"
withintheirpopulationofpriortests.DatashowninSlide16-16.
Slide16-
17
Slide16-
18
Slide16-
19
Slide16-
20
Slide16-
21
Slide16-
22
Comparisonoftestcommercialtopopulationofcommercialstakesfivesteps:
1.Turnthepopulationandsampleproportionsintodecimals.Then,subtractthepopulationproportionfromthesampleproportion
(inthiscasethetestcommercial).Inthisexample,theresultis
.18(.75-.57=.18).
2.Multiplythetwopopulationproportions.Inthisexampletheresultis.25(.57*.43=.25).
3.DividethenumberfromStep2bythesamplesize.Inthisexample,theresultis.005(.25/50).
4.TakethesquarerootofthenumberobtainedinStep3.Inthisexample,thesquarerootisof.005is.071.
5.DividethenumberfromStep1bythenumberisStep4.Inthisexampletheresultis2.53(.18/.071=2.53).
ThevalueobtainedisaZ-score,whichisinterpretedsimilarlytotheZ-scorediscussedearlier.Z-scoreof2.53translatestoan(a)of.011.ThisindicatesthatMcDonald’scanbenearly99%confidentthatthedifferencesarerealandnotduetochance.Giventhataislessthanthe.05levelofsignificance,McDonald’sconcludesthattheproportionofrespondentswhosaytheyintendtotryMcDonald'safterseeingtestcommercialishigherthanaverageproportionofindividualssaying"McDonald's"inpopulationoftestcommercials.Thiscommercialissignificantlybetterthanpriorcommercials.
III.ExaminingtheInternalCharacteristicsofaSingleSample
Themostcommonapproachtoexaminingapatternofresponsestoasinglemeasureischi-square.Inthiscase,itexaminesfrequencydistributionwithinsinglesampleanddeterminesifpatternissignificantlydifferentthanchance.
Example:Anadvertiserhasfourcommercialsandwishestodeterminewhichcommercialbestcommunicatesatargetmessage.Allfourcommercialsareshowntoasampleofconsumersand,afterallareseen,eachrespondentselectsthecommercialheorshethinkswasbestthecommunicator.
PreferencedataforthisexampleisshowninSlide16-21.
Tomaketheunderlyingdatatrendmorevisible,thetableinSlide16-22expandsthepriortable:
• Countofindividualsselectingeachcommercialisturnedintopercentagedistribution(column2).
• Theexpectednumberofindividualsselectingeachcommercialhasbeenadded(column3).Thispercentageandactualnumberassumesthatifchanceselectionwasoccurringanequalpercentageofindividualswouldselecteachcommercial.Thedatainthesecondandfifthcolumnsarewhatisusedintheactualchi-squareanalysis.
Slide16-
23
Slide16-
24
Slide16-
25
Slide16-
26
Resultsofthechi-squarecalculationanditslevelofsignificancehavealsobeenaddedtothebottomoftable,whichwereobtainedfromtypingdataintoonlinecalculator.(Notethatactualvaluesare:152,114,91,79.Expectedvalueforallcellsis109.)
Levelofsignificanceindicatesthatresultsarenotrandomorduetochance.Theprobabilityofthispatternnotbeing“real”islessthan1in1,000.Thus,McDonald’scanconcludethatconsumers’reactionstothecommercialsareindeeddifferent.
IV.MakingJudgmentsAboutASingleMeasureFromTwoorMore
IndependentSamples
Agreatdealofadvertisingresearchentailscomparingmeasuresfromtwodifferentsamples,forexample,conductinganexperimentwheretheresearcherwantstocompareresultsofcontroltoatestgrouporwherearesearcherwantstofindoutifdifferencesbetweentwosubgroups(suchasmenversuswomen)onsamesurveyarestatisticallydifferent.InthesecasesanF-testisused.
A.ComparingTwoMeans
1.TwoConditions
Example:AnadvertiserhasdevelopedtwoadsthataretobeplacedintorotationinGoogleAdwords.Whilebothadswillbeshowninresponsetothesamesearchterms,adsdifferinbenefit:thefirstadstressescustomerservicewhilethesecondadstresseslowprices.Adwordsletsyoumonitorthepurchaseamountresultingfromtheclick-throughforeachoftheads.Dataiscollected
foramonth,andisshowninSlide16-25.
F-testistheappropriatestatisticaltesttouseincircumstancessuchasthis.TableshowninSlide16-26addsresultsofF-test.
F-value(whichtakesintoaccountsamplesize,thedifferencesbetweentheaveragesandstandarddeviation)isusedtodeterminelevelofsignificance,
whichisreportedinthelastcolumn.Dataindicatesthatthedifferencebetweenthetwoadsaresignificantinfavorofthecustomerservicead.Thechancesofthesedifferencesbeingseenduetochanceislessthan1in1,000.
2.OneSurvey,TwoSubgroups
F-testcanbeusedtodetermineiftheresponsesofdifferentsubgroupsarestatisticallysignificant.
Slide16-
27
Slide16-
28
Slide16-
29
Slide16-
30
Slide16-
31
Slide16-
32
Slide16-
33
Imaginethatanadvertiserasksthefive-pointratingquestion:“HowlikelyorunlikelyareyoupurchaseaniPhoneinthenextmonth?”Highernumbersindicateagreaterlikelihoodtopurchase.WhentheratingsofmenversuswomensurveyedarecomparedthedataappearsasthatshownonSlide16-27.
ThetableshownonSlide16-28addsresultsofF-test:
Asinthepriorexample,theF-valuedeterminesthelevelofsignificance.Itindicatesthatthereisasignificantdifferenceinpurchaseintent.Chanceofthesedifferencesbeingseenduetochanceislessthan1in1,000.
V.ComparingThreeorMoreMeans
A.ThreeorMoreConditions
Anadvertiserwantstotestthreeads:anexistingcustomerserviceadandtwoadditionalads.Firstnewadstressesquickdeliverywhilethesecondisa
revisedlowpricead.DataiscollectedforamonthandisshowninSlide16-30.
TableinSlide16-31addsresultsoftheF-test.
Whentestingthreeormoremeans,F-testindicateswhetherallofthemeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Inreadingthelevelofsignificancecolumn,itcanbeseenthatthereisasignificantdifferenceinaveragepurchaseamountgeneratedbyeachad.But,itisnotknownwhichoneisthe“best”untilabsolutelevelsareexaminedandtestsofpairsofmeansareconducted.
DataforthisanalysisisshowninSlide16-32.Whenthisisdone,therevisedlowpriceadisthemostsuccessfulasitissignificantlyhigherthantheothertwoads,whichinturnarenotdifferentfromeachother.
B.OneSurvey,ThreeorMoreSubgroups
Priorprocedurecanbeusedtocomparethreeormoresubgroupsrespondingtothesamesurvey.Imagine,forexample,thatnowyouwantedtoexaminethe
purchaseintentoftheiPhoneamongdifferentagegroups.Therelevantdatafromthefive-pointsurveyquestionisshowninSlide16-33.
Slide16-
34
Slide16-
35
Slide16-
36
Slide16-
37
TableinSlide16-34addsresultsoftheF-test.
Asinthepriorexample,F-testindicateswhetherallmeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Here,thereissignificantdifferenceintheaveragepurchaseintent.But,itisnotknownwhicharesignificantlydifferentfromeachother.
Thisisdeterminedbycomparingeachpairofmeans,asshowninSlide16-35.Thispatternindicatesthatpurchaseintentof18-24yearoldsissignificantlyhigherthantheothertwoagegroupsandthatthepurchaseintentofthose25-49isgreaterthanthatofthoseaged50+.
VI.FactorialDesigns:MakingJudgmentsAbouttheSimultaneous
InfluenceofTwoorMoreVariables
Therearetimeswhenaresearcherwantstofindtheinfluenceoftwoormorevariablesatthesametime.Theadvantageofsimultaneouslymanipulatingtwoormorevariablesisthataresearcherisabletoseeifthereisaninteractionbetweenthevariables.Factorialdesignallowsyoutomanipulatetwoormorevariablesatthesametime.
Factorialdesignisdescribedintermsofitsmainfactorsandthelevelswithineachfactor.
ImagineanadvertiserwantstodevelopfourViraladsforanewcampaign.Theads,whilealldesignedtocommunicatethesamemessage,varyalongtwofactors:useofhumorandgenderofthespokesperson.AsshowninSlide16-36“Humor”and“Gender”arethefactors.Eachfactorhastwolevels:twolevels
ofhumorare“Absent”and“Present”whiletwolevelsof“Gender”are“Male”
and“Female.”
Thefollowingdiscussionlooksatthemostcommonoutcomesoffactorialdesigns.
A.NeitherFactorisSignificant,NoInteractionBetweenfactors
Thefirststepinanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors.TheoutcomeshowninSlide16-37.
Thedataindicatesthat:
• Theoverallaverageforthetwoadswithamalespokesperson
was3.7whiletheoverallaverageforthetwoadswithafemalespokespersonwas3.9.
• Theoverallaverageforthetwoadswithhumorwas3.7whiletheoverallaverageforthetwoadswithouthumorwas3.9.
• Theaveragefor“Logo”was3.6whiletheaveragefor“Text”
was4.0.
Slide16-
38
Slide16-
39
Slide16-
40
Slide16-
41
F-valueisthencomputedforeachfactortheinteractionbetweenthetwofactors.TheF-valueisthentranslatedintoan(a)asshowninSlide16-38.
Datainterpretedasfollows:
• Genderasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.
• Humorasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.
• Nosignificantinteractionbetweenthetwomaineffectsasthe(a)
fortheinteractionisgreaterthan.05.
FindingsareillustratedinthegraphshowninSlide16-39.Notehowlinesforbothmaineffectsareparalleltoeachother(indicatingnointeraction)andveryclosetogether(indicatingthatneithermaineffectissignificant).
B.OneFactorisSignificant,NoInteractionBetweenFactors
Asinthepriorexample,thefirststepcalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-40.
F-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-41.
Datainterpretedasfollows:
•Genderasamaineffecthadaprofoundinfluenceonratingsofcommercialrelevance.
•Humorasamaineffecthadlittleinfluenceonratingsofcommercialrelevance.
•Therewasnosignificantinteractionbetweenthetwofactorsasthe(a)fortheinteractionisgreaterthan.05.
Slide16-
42
Part2
Slides
Slide16-
2
Slide16-
3
Slide16-
4
Slide16-
5
FindingsareillustratedinSlide16-42.Notehowthelinesforbothfactorsareparalleltoeachother(indicatingnointeraction)withthespacebetweenthemquitelarge(indicatingasignificantmaineffect).Thisindicatesthatthemalespokespersonwasalwaysrespondedtoinamorepositivewayversusthefemalespokesperson.Regardlessofwhetherornothumorwaspresent,themalespokespersonreceivedhigherratingsversusfemalespokesperson.
C.OneFactorisSignificant,thereisanInteractionBetweenFactors
Thefirststepintheanalysiscalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-2.
TheF-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenfactorsasshowninSlide16-3.
Datainterpretedasfollows:
• Therewasasignificantinteractionbetweenthetwofactorsas(a)fortheinteractionislessthan.05.Indicatesthatweneedtobecautiousininterpretingthedatarelevanttothemaineffects.
• Genderasamaineffecthadasignificant,independentinfluenceonratingsofcommercialrelevance.However,thesignificantinteractiontermindicatesthatitisnecessarytoexaminethescoresofindividualadspriortodrawingafinalconclusion.Whendone,canbeseenthatsignificanceofthismaineffectisalmostentirelyduetothedifferencebetween“Guitars”and“Text”ads.
• Humorasamaineffecthadnoindependentinfluenceonratingsofcommercialrelevance.
FindingsareillustratedinthegraphshowninSlide16-4.Notehowlinesnowrunatanangletoeachother,ratherthenrunningparallel.Thispatternisavisualindicationofaninteraction.Thelines’closenesswhenhumorispresentanddistancewhenhumorisabsentindicatesthathumoronlyexertsaninfluenceonrelevanceratingswhenitisabsentandonlyresultsinhigherratingswhenamalespokespersonisused.
D.TwoFactorsareSignificant,NoInteractionBetweenFactors
Thefirststepcalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-5.
Slide16-
6
Slide16-
7
Slide16-
8
Slide16-
9
F-valuesandlevelsofsignificancearecomputedforeachfactorandforinteractionbetweenthetwofactorsasshowninSlide16-6.
Datainterpretedasfollows:
• Genderexertedanindependentinfluenceonratingsofcommercialrelevance.Relevancewasratedhigherwhenthespokespersonwasfemaleversusmale.
• Humorexertedindependentinfluenceonratingsofcommercialrelevance.Therewasasignificantdifferencewhenhumorwaspresentversusabsent.Relevancewasratedhigherwhenhumorwaspresent.
• Therewasnosignificantinteractionbetweenthetwofactors.FindingsareillustratedinthegraphshowninSlide16-7.Notehowlinesfor
bothfactorsareparalleltoeachother(indicatingnointeraction)withthespace
betweenthemquitelarge.
E.NeitherFactorisSignificant,thereisanInteractionBetweenFactors
Thefirststepintheanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-8.
F-valuesandlevelsofsignificancearecomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-9.
Dataindicates:
• Therewasasignificantinteractionbetweenthetwofactorsasthe
(a)fortheinteractionisgreaterthan.05.Indicatesthatweneed
tobecautiousininterpretingthedatarelevanttothemaineffects.
• Genderasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenthegenderofthespokespersonwasvaried.Examinationoftheindividualad’smeansindicatesthattherewasalargedifferencebetweenadswithafemalespokespersonandtheadswithamalespokesperson.
• Humorasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenhumorwaspresentorabsent.Examinationofindividualad’s
meansshowsalargedifferencebetweenadswithhumorandtheadswithouthumor.
Slide16-
10
Slide16-
11
Slide16-
12
Slide16-
13
Slide16-
14
FindingsareillustratedinthegraphshowninSlide16-10.Notehowlinesrunatanangletoeachother,ratherthenrunningparallel.Graphindicatesthatfemalespokespeoplearebes
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加强医院急救处置安全管理的整体方案计划
- 科技发展趋势下的网络舆情监测技术升级
- 2024-2025学年高中英语Module3LiteratureSectionⅤWriting-故事概括类作文教案含解析外研版选修7
- 科技助力提升养老服务质量与监督
- 创新教学方法提升幼儿园教育质量计划
- 北京拆迁合同范本
- 2025年01月安徽池州市石台县殡葬管理所编外工作人员公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解-1
- 会展项目评估与效果评价体系考核试卷
- 在化妆护肤品行业建立创新的品牌计划
- 关注社区青年发展计划
- (2024年)神经内科科室应急全新预案x
- 《起重机械安全评估规范》编制说明(征求意见稿)
- 人教版PEP五年级数学下册教案(全册 完整)
- 《陶瓷彩绘装饰工艺》课程标准
- 2024年医学高级职称-全科医学(医学高级)笔试历年真题荟萃含答案
- 预防颈动脉斑块
- 2024春苏教版《亮点给力大试卷》 数学四年级下册(全册有答案)
- 半生熟纸制作工艺
- 教案检查总结及整改措施
- 商业银行经营管理课件
- ESD静电管理标准课件
评论
0/150
提交评论