版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年浙江省杭州市富阳区城区联考中考数学适应性模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B. C. D.2.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.3.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠15.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm6.如图所示的几何体是由4个大小相同的小立方体搭成,其俯视图是()A. B. C. D.7.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在()A.点的左边 B.点与点之间 C.点与点之间 D.点的右边8.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.9.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. B. C. D.10.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=32其中正确的结论个数为()A.4 B.3 C.2 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.12.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.13.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.14.不等式组的解集是▲.15.因式分解:2x16.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.三、解答题(共8题,共72分)17.(8分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).18.(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?19.(8分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.20.(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90b3010频率a0.350.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a=,b=;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.21.(8分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)22.(10分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.(1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.23.(12分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:地铁站ABCDEX(千米)891011.513(分钟)1820222528(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.24.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=.故选C.2、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.3、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4、C【解析】
根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5、C【解析】
首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故选C.【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.6、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图7、C【解析】
根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8、B【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,∵小长方形与原长方形相似,故选B.【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.9、A【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.10、B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=2S△CMG=2×12×12CG×③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=.12、250【解析】
从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.13、1【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14、﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.15、2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.16、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,BD=∵四边形ABCD是矩形,∴AC=BD=10,∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.三、解答题(共8题,共72分)17、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.试题解析:(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)∴将A与B两点坐标代入得:,解得:,∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合题意,舍去)∴N点的坐标为(﹣,).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣,-),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为().将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),综上所述,点P的坐标是()或().【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.18、(1)200元和100元(2)至少6件【解析】
(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.19、原式=,把x=2代入的原式=1.【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式==当x=2时,原式=120、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】
(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);(2)“非常喜欢”频数90,a=;(3).故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.21、见解析【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;22、(1)见解析;(2)正方形的边长为.【解析】
(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足为G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44746-2024粮油机械刮板输送机
- 2024数控机床主轴可靠性加工过程的可靠性技术规范
- 《国际贸易学》大学题集
- 文书模板-无废城市建设总结报告
- 小区物业管理服务方案
- 沙糖桔种植的果园成本费用核算-记账实操
- 2024年四川省资阳市中考英语试题(含答案)
- 第7课《溜索》教学设计-2023-2024学年统编版语文九年级下册
- 2024年电调收音机项目资金申请报告代可行性研究报告
- 货物代理合作协议书(3篇)
- 委托购买设备协议书
- 硫酸脲氨化造粒复合肥料的生产技术
- 图像学完整分
- 医院消防安全培训记录
- 2022-2023年初级经济师之初级经济师人力资源管理真题附答案
- 电梯检验及注意事项全套
- 数字孪生应用技术基础知识考试题库(600题)
- 构建高效课堂让教育真正发生教学课件
- 印刷服务投标方案(技术方案)
- 第15章分式教材分析
- 《西安旅游介绍》课件
评论
0/150
提交评论