版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版八年级数学上册期末专项测评试题卷(Ⅲ)考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、下列运算正确的是(
)A. B.C. D.2、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是(
)A. B.C. D.3、如图,在数轴上表示实数的点可能(
).A.点P B.点Q C.点M D.点N4、如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是(
).A.0 B.1 C.2 D.35、按如图所示的运算程序,能使输出y值为1的是(
)A. B. C. D.二、多选题(5小题,每小题4分,共计20分)1、如图,,,,则下列结论正确的是(
)A. B. C. D.2、以下各式不是最简二次根式的是()A. B. C. D.3、下列运算正确的是(
)A.=5 B.=1 C.=3 D.=64、下列说法不正确的是()A.二次根式有意义的条件是x≥0 B.二次根式有意义的条件是x≥3C.若a为实数,则()2= D.若y=,则y≥0,x≥﹣25、实数a,b,c,d在数轴上的对应点的位置如图所示,则不正确的结论是()A.a﹣3>b﹣3 B.﹣3c<﹣3d C.1﹣a>1﹣c D.b﹣d>0第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米.则旗杆的高度______.2、如图,,,若,则线段长为______.3、当______时,分式的值为0.4、如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____.5、比较下列各数的大小:(1)____3;(2)____-四、解答题(5小题,每小题8分,共计40分)1、平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.(1)请通过计算说明;(2)求证;(3)请直接写出的长为.2、解方程:(1)
(2)3、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为cm2.(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.4、观察下列等式:解答下列问题:(1)写出一个无理数,使它与的积为有理数;(2)利用你观察的规律,化简;(3)计算:.5、如图,在中,.点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接.(1)的形状为______;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长.-参考答案-一、单选题1、D【解析】【分析】A.根据同类二次根式的定义解题;B.根据二次根式的乘法法则解题;C.根据完全平方公式解题;D.幂的乘方解题.【详解】解:A.与不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.,故D正确,故选:D.【考点】本题考查实数的混合运算,涉及同类二次根式、二次根式的乘法、完全平方公式、幂的乘方等知识,是重要考点,掌握相关知识是解题关键.2、A【解析】【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合题意;B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A.【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.3、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.4、D【解析】【分析】直接利用数轴结合点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点表示的数是-1,∴点表示的数是:3故选D.【考点】此题主要考查了实数轴,正确应用数形结合分析是解题关键.5、D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.二、多选题1、ACD【解析】【分析】先证出(AAS),得,,,等量代换得,故C正确;证出(ASA),得到EM=FN,故A正确;根据ASA证出,故D正确;若,则,但不一定为,故B错误;即可得出结果.【详解】解:在和中,∴(AAS),∴,,,∵,,∴,故C选项说法正确,符合题意;在和中,∴(ASA),∴EM=FN,故A选项说法正确,符合题意;在和中,∴(ASA),故D选项说法正确,符合题意;若,则,但不一定为,故B选项说法错误,不符合题意;故选ACD.【考点】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质.2、ABC【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】解:A、,不是最简二次根式,故本选项符合题意;B、,不是最简二次根式,故本选项符合题意;C、,不是最简二次根式,故本选项符合题意;D、,是最简二次根式,故本选项不符合题意;故选ABC.【考点】本题主要考查了最简二次根式的定义,最简二次根式的条件:(1)被开方数的因数是整数或整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3、ACD【解析】【分析】分别根据二次根式的性质化简、二次根式的加减法则、二次根式的除法和乘法法则逐项判断即得答案.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项符合题意;D、,故本选项符合题意.故选ACD.【考点】本题考查了二次根式的运算和利用二次根式的性质化简,属于基础题型,熟练掌握二次根式的运算法则是解题的关键.4、ABC【解析】【分析】根据二次根式有意义的条件和分式有意义的条件逐个判断即可.【详解】解:A、要使有意义,必须x-1≥0,即x≥1,故本选项符合题意;B、要使有意义,必须x-3>0,即x>3,故本选项符合题意;C、当a≥0时,()2才和相等,当a<0时,无意义,故本选项符合题意;D、要使y=成立,必须y≥0,x≥-2,故本选不项符合题意;故选ABC.【考点】本题考查了二次根式有意义的条件和分式有意义的条件,能熟记二次根式有意义的条件和分式有意义的条件是解此题的关键.5、ABD【解析】【分析】依据实数a,b,c,d在数轴上的对应点的位置,即可得到a,b,c,d的大小关系,进而利用不等式的基本性质得出结论.【详解】解:由实数a,b,c,d在数轴上的对应点的位置可知,∵a<b,∴a﹣3<b﹣3,故A选项符合题意;∵c<d,∴﹣3c>﹣3d,故B选项符合题意;∵a<c,∴1﹣a>1﹣c,故C选项不符合题意;∵b<d,∴b﹣d<0,故D选项符合题意;故选ABD.【考点】本题考查了实数与数轴和不等式的基本性质,观察数轴,逐一分析四个选项的正误是解题的关键.三、填空题1、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米.故答案为:12米.【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解.2、8【解析】【分析】过点D作DH⊥AC于H,由等腰三角形的性质可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性质可证DH=CF,由“AAS”可证△DHE≌△FCE,可得EH=EC,即可求解.【详解】解:如图,过点D作DH⊥AC于H,在△DHE和△FCE中,故答案为8.【考点】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.3、且【解析】【分析】根据分式的值为零,分子等于0,分母不等于0即可求解.【详解】由题意得:且解得:且故填:且.【考点】主要考查分式的值为零的条件,注意:分式的值为零,分子等于0,分母不等于0.4、30°##30度【解析】【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.【详解】解:∵四边形ABCD是矩形,∴DN∥AM,∵∠DNM=75º,∴∠DNM=∠BMN=75º,∵将矩形ABCD沿MN折叠,使点B与点D重合,∴∠BMN=∠NMD=75º,∴∠BMD=150º,∴∠AMD=30º,故答案为:30º.【考点】本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.5、
<;
<【解析】【分析】(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较.【详解】解:(1)∵<,∴3<;(2)≈-3.143,-π≈-3.141,∵3.143>3.141∴<-π.故答案为<,<.【考点】本题考查了实数的大小比较,解题的关键是注意:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.四、解答题1、(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)先根据点A坐标可得OA的长,再根据即可得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:5.【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.2、(1)x=;(2)x=【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1),去分母,得3x=2x+3(x+1),解得:x=,经检验,x=是原分式方程的解.(2),去分母,得2-(x+2)=3(x-1),解得:x=,经检验,x=是原分式方程的解.【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3、(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【考点】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曼德拉英语课件
- 西南林业大学《茶文化与茶艺》2023-2024学年第一学期期末试卷
- 西京学院《医学统计学》2022-2023学年第一学期期末试卷
- 西京学院《商业伦理与职业道德》2023-2024学年第一学期期末试卷
- 西京学院《急危重症护理学》2022-2023学年第一学期期末试卷
- 西京学院《电气控制与PLC》2022-2023学年期末试卷
- 西京学院《FundamentalsofManagementAccounting》2022-2023学年第一学期期末试卷
- 西华师范大学《数字电子技术》2022-2023学年期末试卷
- 2024-2025学年高二物理举一反三系列1.1磁场对通电导线的作用力((含答案))
- 西华师范大学《教育统计学》2021-2022学年第一学期期末试卷
- 石灰石粉仓安装方案
- 标准化大纲-模版
- 松下电器(中国)焊接学校——焊接技术
- 《肺动脉高压护理》PPT课件.ppt
- 青少年特发性脊柱侧弯症中医诊疗方案4
- 研发系统积分考核管理办法
- 河堤工程岩土工程勘察报告
- 完整版水稳自评报告
- 《小儿推拿》PPT课件(完整版)
- 幼儿园区域材料投放明细(修改版)
- 人教版五年级上册《练习十七》数学教案_1
评论
0/150
提交评论