重积分的应用_第1页
重积分的应用_第2页
重积分的应用_第3页
重积分的应用_第4页
重积分的应用_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四节一、立体体积二、曲面的面积三、物体的质心四、物体的转动惯量五、物体的引力机动目录上页下页返回结束重积分的应用第十章第一页,共三十三页。1.能用重积分解决的实际问题的特点所求量是对区域具有可加性

从定积分定义出发建立积分式

用微元分析法(元素法)分布在有界闭域上的整体量3.解题要点

画出积分域、选择坐标系、确定积分序、定出积分限、计算要简便2.用重积分解决问题的方法机动目录上页下页返回结束第二页,共三十三页。一、立体体积

曲顶柱体的顶为连续曲面则其体积为

占有空间有界域

的立体的体积为机动目录上页下页返回结束第三页,共三十三页。任一点的切平面与曲面所围立体的体积V.解:曲面的切平面方程为它与曲面的交线在xoy面上的投影为(记所围域为D)在点例1.求曲面机动目录上页下页返回结束第四页,共三十三页。PPT内容概述第四节。1.能用重积分解决的实际问题的特点。从定积分定义出发建立积分式。画出积分域、选择坐标系、确定积分序、。所围立体的体积V.。出的面积A.。方法2利用直角坐标方程.。方法1利用球坐标方程.。距地面的高度为h=36000km,。的连线为z轴,建立坐标系,如右图所示.。半顶角为的圆锥面所截得的部分.。设物体占有空间域,。将第k块看作质量集中于点。在第k块上任取一点。若物体为占有xoy面上区域D的平面薄片,。例6.一个炼钢炉为旋转体形,剖面壁线。内储有高为h的均质钢液,。设物体占有空间区域,有连续分布的密度函数。对z轴的转动惯量为。对y轴的转动惯量。例7.求半径为a的均匀半圆薄片对其直径。物体对位于原点的单位质量质点的引力。设面密度为μ,半径为R的圆形薄片。(t为时间)的雪堆在融化过程中,其。(比例系数0.9),。问高度为130cm的雪堆全部融化需要第五页,共三十三页。例2.求半径为a的球面与半顶角为

的内接锥面所围成的立体的体积.解:在球坐标系下空间立体所占区域为则立体体积为机动目录上页下页返回结束第六页,共三十三页。二、曲面的面积设光滑曲面则面积A可看成曲面上各点处小切平面的面积dA无限积累而成.设它在D上的投影为d

,(称为面积元素)则机动目录上页下页返回结束第七页,共三十三页。故有曲面面积公式若光滑曲面方程为则有即机动目录上页下页返回结束第八页,共三十三页。若光滑曲面方程为若光滑曲面方程为隐式则则有且机动目录上页下页返回结束第九页,共三十三页。例3.计算双曲抛物面被柱面所截解:曲面在xoy面上投影为则出的面积A.机动目录上页下页返回结束第十页,共三十三页。例4.计算半径为a的球的表面积.解:设球面方程为球面面积元素为方法2利用直角坐标方程.方法1利用球坐标方程.机动目录上页下页返回结束(P170例1)第十一页,共三十三页。机动目录上页下页返回结束例5设有一颗地球同步轨道通信卫星,距地面的高度为h=36000km,速度与地球自转的角速度相同.通信卫星的覆盖面积与地球表面积的比值.运行的角试计算该解取地心为坐标原点,地心到通信卫星的连线为z轴,建立坐标系,如右图所示.通信卫星覆盖的曲面

是上半球面被半顶角为

的圆锥面所截得的部分.

的方程为于是,通信卫星的覆盖面积为其中,Dxy是曲面在xOy面上的投影区域.第十二页,共三十三页。机动目录上页下页返回结束利用极坐标,得由于代入上式得由此得这颗通信卫星的覆盖面积与地球表面积之比为由已上结果可知,卫星覆盖了全球三分之一以上的面积.地球全部表面.故使用三颗相隔角度的通信卫星就可以覆盖几乎第十三页,共三十三页。三、物体的质心设空间有n个质点,其质量分别由力学知,该质点系的质心坐标设物体占有空间域

,有连续密度函数则公式,分别位于为为即:采用“大化小,常代变,近似和,取极限”可导出其质心机动目录上页下页返回结束第十四页,共三十三页。将

分成n小块,将第k块看作质量集中于点例如,令各小区域的最大直径系的质心坐标就近似该物体的质心坐标.的质点,即得此质点在第k块上任取一点机动目录上页下页返回结束第十五页,共三十三页。同理可得则得形心坐标:机动目录上页下页返回结束第十六页,共三十三页。若物体为占有xoy面上区域D的平面薄片,(A为D的面积)得D的形心坐标:则它的质心坐标为其面密度—对x轴的

静矩—对y轴的

静矩机动目录上页下页返回结束第十七页,共三十三页。例5.求位于两圆和的质心.

解:利用对称性可知而之间均匀薄片机动目录上页下页返回结束(P173例3)第十八页,共三十三页。例6.一个炼钢炉为旋转体形,剖面壁线的方程为内储有高为

h的均质钢液,解:利用对称性可知质心在z

轴上,采用柱坐标,则炉壁方程为因此故自重,求它的质心.若炉不计炉体的其坐标为机动目录上页下页返回结束第十九页,共三十三页。机动目录上页下页返回结束第二十页,共三十三页。四、物体的转动惯量设物体占有空间区域,有连续分布的密度函数该物体位于(x,y,z)处的微元因此物体对z轴的转动惯量:对z轴的转动惯量为因质点系的转动惯量等于各质点的转动惯量之和,故连续体的转动惯量可用积分计算.机动目录上页下页返回结束第二十一页,共三十三页。类似可得:对x轴的转动惯量对y轴的转动惯量对原点的转动惯量机动目录上页下页返回结束第二十二页,共三十三页。如果物体是平面薄片,面密度为则转动惯量的表达式是二重积分.机动目录上页下页返回结束第二十三页,共三十三页。例7.求半径为a的均匀半圆薄片对其直径解:建立坐标系如图,半圆薄片的质量的转动惯量.机动目录上页下页返回结束(P175例5)第二十四页,共三十三页。解:

取球心为原点,z轴为l轴,则球体的质量例8.求均匀球体对于过球心的一条轴

l的转动惯量.设球所占域为(用球坐标)机动目录上页下页返回结束第二十五页,共三十三页。G

为引力常数五、物体的引力设物体占有空间区域,物体对位于原点的单位质量质点的引力利用元素法,在上积分即得各引力分量:其密度函数引力元素在三坐标轴上的投影分别为机动目录上页下页返回结束第二十六页,共三十三页。对xoy面上的平面薄片D,它对原点处的单位质量质点的引力分量为机动目录上页下页返回结束第二十七页,共三十三页。例9.设面密度为μ,半径为R的圆形薄片求它对位于点解:由对称性知引力处的单位质量质点的引力.。机动目录上页下页返回结束第二十八页,共三十三页。例10.求半径R的均匀球对位于的单位质量质点的引力.解:利用对称性知引力分量点机动目录上页下页返回结束(P177例7)第二十九页,共三十三页。为球的质量机动目录上页下页返回结束第三十页,共三十三页。(t为时间)的雪堆在融化过程中,其侧面满足方程设长度单位为厘米,时间单位为小时,设有一高度为已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130cm的雪堆全部融化需要多少小时?(2001考研)机动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论