Capgemini-技术愿景2024-推动未来_第1页
Capgemini-技术愿景2024-推动未来_第2页
Capgemini-技术愿景2024-推动未来_第3页
Capgemini-技术愿景2024-推动未来_第4页
Capgemini-技术愿景2024-推动未来_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EXECUTIVE

COMPANION/Prompt

Whatwillsmarttechnologyinthefuturelooklike?TECHNOVISIONPROMPTTHEFUTURE2024TECHNOVISION

2024/Promptthefuture0710130811152TechnoVision2024:

ExecutiveCompanionTABLE

OFCONTENTS0506INTRODUCTIONWHICHTECHNOLOGY(MEGA)TRENDSWILLSEEINFLECTIONPOINTSIN2024?Generative

Artificial

Intelligence–SmallWill

Be

the

New

BigQuantumTechnology–WhenCyberMeets

QuantumSemiconductors

–Moore’sLaw

Isn’tDead,But

It

Is

ChangingBatteries

–The

Powerof

New

Chemistry070810111315SpaceTech–Addressingthe

Earth’sChallengesfromOuterSpaceBeyond

2024

–Other

TechnologiesShapingthe

Next5Years161922TECHNOVISION2024

SUMMARIZEDTECHNOVISION2024:

WHAT’S

NEW?FURTHERRESEARCH3/Prompt

Whatwillsmarttechnologyinthefuturelooklike?4TechnoVision2024:

ExecutiveCompanionINTRODUCTIONThequote“We

shapeourtechnologiesandafterwards

ourtechnologiesshapeus”echoesWinstonChurchill’sfamouswordsduringthereconstructionoftheCommonsChamberin1943,afteritsdestructionbyincendiary

bombsintheBlitz.Churchill,emphasizingthesignificanceoftheChamber’s

adversarialrectangularpattern,believedthatitsshapewascrucialforBritain’stwo-partysystemandparliamentary

democracy.Similarly,wecouldarguethatweareinevitablyshapedbythetechnologieswecreate.Technology’sprimary

roleistoaugmentandenhancehumanabilities,atraitdistinguishinghumansfrommostmammals.However,weoftenoverlookhowtechnology,inturn,influencesourbehavior,organizations,andsociety.A

criticalquestionarises:Howwilltechnologyshapeourworldin2024andbeyond?Forover15yearsnow,Capgemini’sTechnoVisionhasbeenexploringthisquestionbutsofarithasmainlyfocusedonITTrends.Thisyearwedecidedtoadda

companiontoourTechnoVisionfullreport,

takinga

widerviewoftechnologiesthataremovingtheworld.Overall,ourintentisnottobuildfuturisticforecasts;weseeTechnoVisionasa

tooltofacilitatestrategicdialoguebetweentechnologistsandbusinessleaders,helpingtoidentify

prioritiesandopportunitiesforbusinessoperationsanddigitalsystemsdevelopment.TechnoVisionaimstobetheguiding‘NorthStar’

inthedualtransformationtowardsa

digitalandsustainableeconomy.Thisjourneyinvolvesnumeroustechnologicalandbusinessdecisions,mademorecomplexbytheurgentneedforstrategicchoicesthatmightseemsimpleatfirstglancebutoftenhavefar-reachingimplications.GenerativeAI,whichtooktheworldbystormin2023,isexpectedtocontinueshapingthefuture.Alongsidethis,severalotherkeytechnologymegatrendsarecriticalfordecision-makersplanningforthefuture.Thisisthestartingpointofourdiscussion,leadingtothe37trendsoutlinedinTechnoVision2024.Together,thesetrendswillprovideinsightsforshapingthefutureanddeterminingthenecessary

‘prompts’fororganizationsin2024toturntheirvisionsintoreality.MICHIELBOREELPASCAL

BRIERExecutiveVicePresidentandGlobalChiefTechnologyOfficeratSogeti,partofCapgeminiGroupChiefInnovationOfficerandmemberoftheGlobalExecutiveCommittee5WHICH

TECHNOLOGY(MEGA)TRENDS

WILL

SEEINFLECTION

POINTS

IN

2024?Whenitcomestoshapingthefuture,alltechnologytrendsmightholdequalsignificance,asforecastingisoftena

challenging,ifnotanimpossibletask.However,certaintrendsemergeasmoreprominentduetotheiranticipatedsubstantialimpactandtheexpectationofsignificantbreakthroughsinthenearfuture.Wehavepinpointedfivesuchprominenttechnologymegatrendsthatshouldhaveinflectionpointsin2024:Generative

ArtificialIntelligence

SmallwillbethenewbigQuantumTechnology–

Whencyber

meetsQuantumSemiconductors

Moore’sLaw

isn’t

dead,butitischangingBatteries

Thepower

ofnewchemistrySpaceTech–

Addressing

theearth’s

challengesfromouter

space6TechnoVision2024:

ExecutiveCompanionGENER

ATIVE

AI

SMALLWILL

BE

THE

NEW

BIGIn2024,willGenerativeAIliveuptothemassiveamountofhypeithasgenerated?Theshortanswerisyes.GenerativeAIhasmadea

crashingentranceintheglobaltechnologyandbusinessconversationinlate2022and2023,withexpectationsofsignificantbusinessimpact.Butthispopularityalsohighlightedsomeofthedrawbacksofgeneral-purposeLargeLanguageModels(LLMs).Onenotableproblemhasbeenthetendency

ofsomeofthesemodelsto‘hallucinate’,inotherwords,tooccasionallyproduceoutputsthatareunexpected,irrelevant,

nonsensical,ordisconnectedfromtheinputtheyreceived.In2023,thesolutionhasmostlybeentobuildbiggerandbiggermodels,withmoredata,moreparameters,andmorecomputingpowerbehindthem.Butthistrendisnotinfinitelysustainable,norisitsuitedforallusecases.WhilecurrentLLMswillcontinuetothrive,thereisalsoanincreasingneedforsmaller,morecost-efficient,andspecializedmodels.Forexample,wewillseesector-specificmodelsforadvancedusecasesinmedicine,engineering,education,andmanyothers.Wecanalsoanticipatedomain-specificmodels,tailoredforspecifictasks(likeadvancedcodingassistants).Thesemodelswillgetsmallerandsmallertorunonlow-footprintinstallationswithlimitedprocessingcapabilities,includingontheedgeorsmallerenterprisearchitectures.Why

it

matters:

ThedevelopmentsinGenerativeAIareindicatinganevolutiontowardsa

moreaccessible,versatile,andcost-effective

technology.TheinnovationsmentionedbeforewillenableorganizationstoscaletheirGenerativeAIusecasesfasterwhilealsoderivingmorelong-termvaluefromthetechnology.Inaddition,forusecaseswherefactualityandcorrectnessmatter,thecapabilitiesofLLMswillbeenhancedbyintegratingstructuredknowledgefromknowledgegraphs.Thispromisingcombinationcanimprovetheaccuracy,relevanceanddepthofinformationprovidedbyLLMs.In2024,wewillseemoreandmoreAIsystemsthatnotonlyhaveadeepunderstandingofnaturallanguagebutarealsoanchoredinstructured,factualknowledge,makingthemmorereliableandeffectivefora

widerangeofapplications.Things/projects

to

watch

for:

‘Small

beingthenewbig’mayseemparadoxical,butit'ssettobecomea

reality.ThequestisonforsmallerLLMsthatrequiresignificantlylessresourcestotrainandoperate,whilegeneratinglessfalseinformation(theso-calledhallucinations),propagatingfewersocialstereotypes,andproducinglesstoxiclanguage.Themission:makeAImodelscomputeefficient,

helpful,andtrustworthy.InnovationslikeStanford’sAlpaca,andEuropeanventuressuchasMistralAIandAlephAlpha,areleadingthismovementbutMicrosoftandGooglearealsoenteringthearenawithOrcaandGeminiNano.Insupportofallthis,newplatformsareemerging,providingtoolsforcompaniestoleverageGenerativeAIwithouttheneedfordeepinternaltechnicalexpertise.Thiswilllead,inthelongrun,tothecreationofinterconnectednetworksofmodelsdesignedandfine-tunedforspecifictasks,andtothedevelopmentoftruemulti-agentgenerativeecosystems.7QUANTUMTECHNOLOGY

–WHEN

CYBER

MEETSQUANTUMEntering2024,quantumcomputinghasdefinitivelylefttheeraoftheoreticalexplorationandentereda‘utility-scale’quantumcomputationage.As

definedbyIBM,‘utility-scale’quantumcomputersprovidecomputingcapabilitiesbeyondthereachofclassicalcomputationsandopena

doortoa

quantumisstillmanyyearsaway.Nonetheless,2024willseevariousclaimsofa

narrowquantumadvantageinspecializedtaskswithinlargerconventionalcomputationalworkflows.Boostedbyearlysuccesses,broaderquantumadvantageswillappearinthecomingyears.Drivenbytheprospectofquantumadvantageinthenearfuture,companies,startups,andresearchinstitutesareracingtofindthefirstreal-worldapplications.Keyareasinclude:advantageinreal-worldcommercialquantumapplications.As

significantchallengesinqubitqualityremain,a

large-scale,broadquantumadvantage8TechnoVision2024:

ExecutiveCompanion•

Condensed

Matter

Physics:

Understanding

the

behaviorof

complex

materials

at

a

quantum

level

can

revolutionizematerial

science

and

engineering.Inlate2022,theUSGovernmentenactedthe‘QuantumComputingCybersecurityPreparednessAct,’

whichpromisestocatalyzea

seismicshiftacrossindustries.ThisgroundbreakinglawmandatesthatallprivateentitiesconductingbusinesswiththeUSgovernmentmustmigratetoPQCwithina

yearaftertheNISTstandardsarefinallyreleased.ThisshouldaffectPQCstandardsglobally.•

Quantum

Chemistry:

Solving

the

Schrödinger

equation

forlarger

molecules,

which

classical

computers

struggle

with,can

lead

to

drug

discovery

and

materials

breakthroughs.•

Computational

Fluid

Dynamics:

Addressing

thechallenges

in

simulating

fluid

flow,essential

foraerodynamics

and

climate

modelling.Thereleaseofthefinalstandard,combinedwiththenewregulationshouldintensify

therushtowardsa

quantum-safefuturein2024.Organizationseverywhere

needtotakeimmediatestepstowardupdatingtheircryptographicsystemsandsoftwaretothenewquantum-safealgorithmsbecauseaveragemigrationwilltakesignificanttime.Althoughquantumcomputerscapableofbreakingtoday’s

encryptiondonotexistyet,

theriskofbadactorscollectingencrypteddatatodaywiththeintentionofdecrypting

itlater(harvestnow–

decrypt

later),isvery

real.•

Partial

Differential

Equations:

These

equations

arefundamental

in

expressing

physical

phenomena

andsolving

them

more

efficiently

will

provide

value

in

fields

likefinance

and

engineering.•

Logistics

and

Operations

Research:

Optimizing

supplychains

and

logistics

can

benefit

from

quantum

computingby

finding

solutions

to

complex

optimization

problemsmore

quickly.•

Sampling

and

Monte

Carlo

Methods:

Used

in

statisticalphysics

and

finance,

these

methods

can

be

quadraticallyfaster

on

a

quantum

computer,providing

more

accuratemodels

and

forecasts.As

therushforquantumpreparednessintensifies,startingaroundmid-2024,industriesrangingfromfinancetohealthcarewilllikelyinvestheavilyinupgradingtheircybersecurity

infrastructures.Additionally,asquantumcomputersaresupposedtobreakcommonlyusedpublic-keycryptosystems

(suchasRSAandECC)oneday,a

large-scalemigrationtoquantum-safetechnologyisabouttostart.

Drivenbytechnologicalimprovementsandregulatory

pressure,2024promisestobeapivotalyearforquantum-safesolutions.Why

it

matters:

ThisemergingshifttoPostQuantumCryptography

promisestoupendthevery

basisofcybersecurity

standardsglobally.Allbusinessleadersandtechnologyexpertswillbeaffectedbythisapproachingmilestone,whilemoreandmoreorganizationsbegintheirquantumtransition.Alreadyin2017,theNationalInstituteofStandardsandTechnology(NIST)

initiateda

publicprocesstoselectquantum-resistantpublic-keycryptographic

algorithmsforstandardization.Theyrealizedthatpublic-keyinfrastructuresarecrucialtodigitaltrust,

protectingeverything

fromwebconnectionsandemailtodigitallysigneddocumentsandcode.Thealgorithmsforasymmetriccryptography

inplacetodayrelyonmathematicallychallengingproblems,suchasfactoringvery

largenumbers,whicharecomputationallydifficultforcurrentcomputers.Traditionalcomputerswouldtakeyearstobreakthesealgorithms.A

sufficientlypowerfulquantumcomputercouldsolvethesehardmathproblemsina

matterofminutesbyleveragingitsabilitytoprocessmultiplesimultaneousstates.NIST’s

goalistoestablishanewstandardbasedonevenhardermathproblems(e.g.latticecryptography)

thataredifficultforbothtraditionalandquantumcomputers.To

beclear,quantum-safealgorithmsdonotrequirea

quantumcomputerthemselves;theyprotectagainstanattackleveraginga

quantumcomputerwhentheybecomepowerfulenough.Things/projects

to

watch

for:

Althoughenterprisescalequantumcomputingisprobablystillmanyyearsaway,promisingprogressisbeingmadeinseveralareas.GoogleandIBMbelievecommercialquantumsystems,applyingerrormitigationtechniques,areonlya

fewyearsaway.Bothtechgiantshavealsoreleasedpublicroadmapsreachingonemillionqubits,by2029forGoogleand2030forIBM.Inthemeantime,hybridclassicaland‘noisy’

quantumcomputing(NISQ–

NoisyIntermediate-ScaleQuantum)willdeliverthefirstpracticaluseinspecificproblemareas,whilewewaitforlarge-scalefault-tolerantquantumcomputerstobeavailable.9SEMICONDUCTORS–

MOORE’S

LAWISN’T

DEAD,BUT

IT

ISCHANGINGSimultaneously,thesemiconductorecosystemissettoundergoreconfiguration.Thiswillencompasstheestablishmentofnewgigafactories,theadaptationtolocalregulations,theexpansionoffabricationcapacities,theintroductionofnovelbusinessmodels,andenhancedfoundry

services.

Semiconductorcompaniesareexpectedtointensify

theirfocusoncateringtoindustry-specificdemandsbyproducingchipsthatsignificantlyenhancecustomerexperiences,markinga

newerainsemiconductortechnology.Thesemiconductorindustry

standsonthebrinkofarevolutionary

shiftin2024,influencedbyvariousfactorsthatarecollectivelytransformingitsdynamics.Why

it

matters:

Anaccelerateddigitaltransformationisexpectedacrossindustries,enabledbymorepowerfulconnectedobjects,fromsmartphonestoelectricvehiclestodatacentersandtelecoms.Thesetechnologicalbreakthroughswillbereflectedinshiftsintheecosystemofsemiconductorsitself,withnewgigafactories,regulations,businessmodels,andfoundry

servicesemergingin2024.Throughout2023,therehasbeenanintensediscussionamongexpertsaboutthefutureofMoore's

Law,whichpositsthatthenumberoftransistorsonanintegratedcircuitdoublesapproximatelyevery

twoyears,therebyenhancingthecomputingpowerofa

microchip.As

chiptechnologyapproachesthe2-nanometer(0,0000001cm)scale,withthecostsofmanufacturingexpandingatanexponentialrate,questionsariseaboutthefeasibilityofcontinuingthistrend,especiallyconsideringtheimpendingphysicalconstraintsatthe1-nanometerscale.Things/projects

to

watch

for:

Crammingmorecomponentsontointegratedcircuitswillcometoanendbecauseweareapproachingtheboundariesofphysics.Despitethisinsurmountableasymptoticpeakofphysics,chipdesignisnowcontemplatinga

1.xnanometerscale.However,energyandheatchallengesposesignificantchallenges.Inaddition,thecostoffabricationofsuchchipsgrowsaggressively.OneapproachtoimprovingperformanceandlowerenergyuseistoaddAIintothechip(IBMZ

Systems)toreducethemovementofdatatothecomputeandbackandhaveitavailableintheprocessorchipanditscaches.However,2024ispoisedtodemonstratethatMoore'sLawisnotobsoletebutratherundergoingametamorphosis.

We're

likelyto

witness

shifts

in

approach,suchastheadoptionofverticalstackinginmulti-layerstructures,explorationofnon-siliconmaterials,andnewlithographytechniques.Inessence,wecanlabelthistechnologicalshiftasgoingfor'morethanMoore’,i.e.,aimingtosustainthegrowthincomputingpower,evenastraditionalmethodsofchipminiaturizationapproachtheirphysicallimits.OthersuseAItooptimizethepowerconsumptionleveragingperiodsoflesseractivitywherenoteverycomputeresourceisbeingusedtoitsfullest.

AnotherwaytoleverageAIistoassistthesoftwareengineerunderstandthetradeoffbetweentheperformanceofthesystemandtheprecisionofthenumbers.Iftheyneedmorebandwidth,theycanreducetheprecision,trainingspecificallyforreducedprecision,effectivelyexchanginga

hardwareproblemfora

softwareproblem.Otherapproachesincludeaddingmorenodesorusingheterogeneousarchitectureslikehandingofftaskstospecializedco-processorslikeGPUs,TPUs,andXPUsexemplifiedbyNvidia’sHopper+

Gracesolution,Intel’sSaphireRapids,andFalconShoreplatforms.10

TechnoVision2024:

ExecutiveCompanionBAT

TERIES

THE

POWER

OFCHEMISTRY2.

PowerDensity:

Powerdensityreferstotheenergyabattery

canreleaseineachcapacity,withspecificpowerdenotingenergyperunitmass.Thechargingrate(C-rate)describesthepowerneededtochargea

battery,

anddischargepowerindicatestheenergyoutputatanymoment.Improvingtheperformanceandreducingthecostsofbatteriesisa

majorfocusforbothbusinessesandgovernments,astheindustrialstakesarehighforeachnation.Theaimistosupportelectricmobilityandacceleratelong-durationenergystorage,whichiscriticaltospeeduptheenergytransitiontorenewablesandtheaccelerationofsmartgrids.Therearefivekeyperformancecharacteristicsofbatterytechnologyevolution:3.

Lifespan:

Thelifespanofa

battery

decreaseswitheachcharge-dischargecycle,

affectingitslongevityandsuitabilityforitsoriginalpurpose.Eventually,batteriesshouldberepurposedorrecycled.4.

Costs:

Costisa

significantfactor,oftencalculatedperkWh.ForEVs,achievingcostparitywithinternalcombustionenginevehiclesiskey,asthebattery

packisthemostexpensivecomponent.1.

Energy

Density:

Energydensityinbatteriesismeasuredintwoways:volumetric(Wh/L)andgravimetric(Wh/kg),indicatingtheenergystoredperunitvolumeormass.Thisiscrucialforelectricvehicles(EV)

andstationary

energystorage,wherebattery

sizeandweightmatter.5.

Safety:

Safetyconcernsariseduetotheflammableliquidelectrolyteandthermalenergyreleasefromthecathodematerialafterseveralcycles.

ThesesafetyissuescouldhinderthebroaderadoptionofEVsandbattery-basedenergystoragesolutions.11WhileLFP(lithiumferro-phosphate)andNMC(nickelmanganesecobalt)arebecomingstandardforelectricvehicleapplications,severaltechnologiesconcerningthechemistry

ofbatteriesarebeingexplored,suchascobalt-free

(sodium-ion)andsolid-statebatteries,witha

likelyaccelerationin2024.Theprimary

driverforthemarketofsodium-ionbatteriesistheincreaseddemandforenergystoragegeneratedthroughsolarandwind.Marketleadersinthisindustry

areFaradionLimited(UK),NGKInsulatorsLtd(Japan),Tiamat(France),HiNaBatteryTechnologyCo.Ltd(China),andContemporary

AmperexTechnologyCo.Limited(China).Thedevelopmentofsolid-statebatteriesrepresentsa

majorshiftinbattery

technology,primarilyforelectricvehicles,astheyhavehigherenergydensities(i.e.storagecapacity),forapricewhichwillbecomelowerthantraditionalbatteries.Theyalsoreducedependency

onmaterialssuchaslithium,nickel,cobalt,

rare-earthminerals,andgraphite,whilepromisinglongerlifespansandmorerobustsafety.QuantumScape(USA),Toyota

(Japan),SolidPower(USA),Samsung(South-Korea),andLG

Chem(South-Korea)areamongtheleadersinthisrapidlyevolvingfield.Why

it

matters:

Ina

businessworlddrivenbytheenergytransition,thefightagainstclimatechange,andorganizationsintransitiontoa

sustainableeconomy,theseemergingdevelopmentsmayoffera

pathwaytowardsbettertradeoffsforthebattery

industry

andmoresustainableuseofmaterials.Things/projects

to

watch

for:

Whenlookingatthistechnologymegatrend,twocategoriesofplayersneedtobedistinguished:theunicornsandthestartups.Amongsttheunicorns,well-establishedcompaniescanberecognizedsuchasTesla(USA),acceleratingthetransitiontoEVsandenergystorage,Northvolt(Sweden),manufacturingLi-ionforEVs,Verkor

(France),manufacturinglow-carbonbatteriesforEVs,QuantumScape(USA),developssolid-statebattery

technologytoincreasetherangeofEV’s,

Freyr(Norway),

manufacturingsemisolidLi-ionbatteriesforenergystorageandEVs,Sila(USA),providerofnano-compositesiliconanodethatpowersbreakthroughenergydensityinEVbatteries,andSESAI(USA),manufacturingofscalable,dense,smartandlightLi-Metalbatteriesforelectrictransportationonlandandinair.Sincebattery

technologyexhibitsgenuinequantummechanicalandquantumchemicalbehavior,itisa

very

naturalareatoapplyquantumcomputing.Severalgovernment-fundedandpromisingprojectsareongoing,anda

largeamountofstartupactivitycanbewitnessed—

e.g.IonQ(USA),psiQuantum(USA),Phasecraft(UK).12

TechnoVision2024:

ExecutiveCompanionSPACETECH

ADDRESSINGTHE

EARTH’SCHALLENGESFROM

OUTER

SPACE•

In

the

field

of

space

communications

and

networks,

we

cansee

a

surge

of

exciting

projects

such

as

the

developmentof

laser

communication

systems,

hybrid

ground

and

spacenetworks,

or

even

seamless

5G

connectivity

from

space.•

In

Earth

Observation,

we

can

look

forward

to

fascinatingprojects

to

advance

our

understanding

of

the

planet

andits

changing

environment.

In

particular,

the

increasingintegration

of

AI

in

Earth

Observation

is

offeringmore

efficient

data

processing,

enhanced

analyticalcapabilities,

and

the

potential

for

new

insights

into

Earth'senvironmental

and

climate-related

challenges.In2024,humanitywillbepreparingtoreturntothemoon.TheNASA

ArtemisIIMission,scheduledfora

November2024launch,willsendastronautsintolunarorbitforthefirsttimesincethe1972Apollo17mission.Thislandmarkeventisasymbolofa

broaderindustry

trendthatcanbedescribedasanewSpaceAge.•

Simultaneously,

the

Internet

of

Things

is

expanding

intoan

entirely

new

dimension

with

the

development

ofsatellite

constellations.

CubeSats,

ChipSats,

and

othernanosatellites

are

being

launched

in

their

thousands,each

onboarding

its

own

array

of

miniature

sensors

andcommunications

equipment.

An

exponentially

growingvolume

of

data

is

being

collected

and

shared

for

a

varietyof

purposes,

including

gathering

data

on

weather

patternsand

wildlife

migrations.Thisrenewedinterestinspacetechnologiesisdrivenbytwomajorshiftsintheindustry.Firstly,andcontrary

totheSpaceRaceofthe'60sand'70s,itisdrivennotjustbygovernmentagencies,butalsobya

multitudeofprivateactors,fromstartupstocorporations.Secondly,asidefromthemajorscientificmissionsheadedtotheMoonorMars,thisraceismostlyheadedforLowEarthOrbit(LEO),inthepursuitofcheaperusecasesandmoreperformance.Allinall,theyear2024issettousherinanarrayofexcitingtechnologicalprojectsinmanydomains:•

There

are

also

several

exciting

projects

at

the

intersectionof

cyber

and

space,

even

in

the

field

of

quantumcryptography.

Cybersecurity

in

space

has

become

a

crucialfrontier,

especially

as

the

reliance

on

space-based

assetsfor

both

military

and

civilian

purposes

increases.

There'san

increasing

emphasis

on

improving

cybersecurity

forspace-bound

equipment,

with

strategies

like

Zero

Trustarchitectures,

and

even

research

into

Quantum

KeyDistribution

(QKD).•

Finally,

this

new

space

age

is

driven

by

a

complete‘sustainable

by

design’

philosophy.

This

approachemphasizes

the

importance

of

sustainability

from

theoutset

by

emphasizing

the

development

of

spacecraft

andsatellites

that

are

not

only

more

efficient

but

also

reducespace

debris.13Alloftheseinnovationssignify

thedawnofa

newepochinspaceexploration,fueledbyrapidtechnologicaladvancementsanda

rekindledinterestfromthepublic.

Thisrenewedinterestinspacetechnologiesaimstodrivescientificdiscoveriesandhelpsolvetheearth’smostcriticalchallenges,includingthemonitoringofclimaterisksanddisasters,betteraccesstotelecommunications,aswellasdefenseandsovereignty.13.

Abyom

SpaceTech

(India):

Developingre-ignitablecryogenic

rocketengines.14.

Clear

Space

(Switzerland):

Removingspacedebris.15.

Vyoma

(Germany):

Addressingcollisionavoidance.16.

Ion-X

(France):

Innovatinginelectricpropulsionsystems.17.

Quasar

(Australia):

DevelopingPhasedarraygroundWhy

it

matters:

ThelastSpaceRacerevolutionizedtheworldbyacceleratinggroundbreakinginnovationslikesatellitetechnology,GPS,

integratedcircuits,solarenergy,andcompositematerials.Thisreturntothestarspromisessimilarrevolutionsinthefieldsofcomputing,telecommunications,andEarthObservation.stations.18.

Astrix

(New

Zealand):

Focusedoninflatablesolararrays.19.

Astranis

(USA):

Buildingsmall,lowcostinternetconnectivitysatellites.Things/Projects

to

watch

for:

In2024,theSpaceTechsectorisbrimmingwithinnovativestartups,eachcontributinguniqueadvancementstotheindustry.

Someplayerstokeepaneyeoninclude:20.

Blue

Origin

(USA):

Pioneeringreusablerocket

technology.1.

Blackshark

(Austria):

Identifying

anyobjectontheearth’ssurfacefromspace.2.

GalaxEye

(India):

Providingall-weathermultisensoryimagingsatellites.3.

Helios

(Israel):

Extracting

oxygenfrommoondust.4.

Orbit

Fab(USA):

Fuellingstationsforspacecraft.5.

True

Anomaly

(USA):

Specializinginautonomousorbitalvehicles.6.

Spin

Launch

(USA):

Catapultingrocketsintospace.7.

GATE

Space

(Austria):

Offer

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论