版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-
PAGE
2
-
AGenericParallelGeneticAlgorithm
by
RoderickMurphy(B.E.)
AThesissubmittedto
TheUniversityofDublin
forthedegreeof
M.Sc.inHighPerformanceComputing
DepartmentofMathematics
UniversityofDublin
TrinityCollege
October2003
DECLARATION
Ideclarethat:
1. Thisworkhasnotbeensubmittedasanexerciseforadegreeatthisor anyotheruniversity.
2. Thisworkismyownexceptwherenotedinthetext.
3. Thelibraryshouldlendorcopythisworkuponrequest.
__________________________________
RoderickMurphy(October20th2003)
ABSTRACT
Geneticalgorithmshavebeenproventobebothanefficientandeffectivemeansofsolvingcertaintypesofsearchandoptimisationproblems.Thisprojectprovidesalibraryoffunctionsthatenableausertoimplementvariationsofcommonlyusedgeneticalgorithmoperators,includingfitnessfunctionscaling,selection,crossover,mutationandmigration,withwhichtheycansolvetheirspecifiedproblem.ThemainfunctionisparallelisedusingPthreads.Usingtheprisoners’dilemmaasanexampleproblem,resultsshowasignificantspeed-upcomparedwithapurelyserialimplementation.
ACKNOWLEDGEMENTS
FirstlyIwouldliketothankMrDermotFrostforhisguidanceandintroductiontothisextremelyinterestingtopic.IwouldalsoliketothankmyHPCclassfortheirpearlsofwisdomandtipsforusingthemanyusefulapplicationsthatmadethisprojectareality.InparticularIowemygratitudetoPaddyforthehourshespenthelpingmedebugmycodeandfindthenumeroustpyeosinthisthesis.AlsoDave,Rachel,MadeleineandBrianforthenumerouscupsofcoffeeandhelpfuldebateonawiderangeofbothusefulanduselesstopics.FinallyIwouldliketothankmyfamilyfortheirloveandsupportthroughouttheyear.
Contents
1.0. IntroductiontoGeneticAlgorithms
1.1. Introduction
1.2. SearchSpaces
1.3. ASimpleExample
1.4. ComparisonbetweenBiologicalandGATerminology
1.5. ApplicationsofGeneticAlgorithms
1.6. HoworwhydoGeneticAlgorithmswork?
2.0. GAOperatorsinFurtherDepth
2.1. Introduction
2.2. EncodingaProblem
2.3.0. Selection
2.3.1 FitnessProportionalSelection
2.3.2 RankSelection
2.3.3. TournamentSelection
2.4.0. FitnessScaling
2.4.1. LinearScaling
2.4.2. SigmaTruncation
2.3.3. PowerLawScaling
2.5. Elitism
2.6.0. Crossover
2.6.1. Single-pointcrossover
2.6.2. Multi-pointcrossover
2.6.3. ParameterizedUniformCrossover
2.7. Mutation
2.8. Inversion
2.9. ParameterValuesforGeneticAlgorithms
2.10. Conclusion
3.0. ParallelGeneticAlgorithmOperators
3.1. Introduction
3.2. MasterSlaveparallelGAprototype
3.3. Distributed,AsynchronousConcurrentparallelGA prototype
3.4. NetworkparallelGA
3.5. IslandModel
3.5. Conclusion
4.0. ImplementationofParallelGeneticAlgorithm
4.1. Introduction
4.2. ObjectiveValuefunction
4.3. ParallelGeneticAlgorithmFunction
4.4.0. ImplementationofMigrationOperators
4.4.1. WhatTechnologyWasUsed?
4.4.2. ThreadedImplementation
4.5. Conclusion
5.0. Results
5.1. Introduction
5.2.0. ThePrisonersDilemmausingParallelGA[MI96]
5.2.1. Encoding
5.2.2. GeneticAlgorithm
5.2.3. SerialImplementation
5.2.4. Results
5.3. Conclusion
6.0. ConclusionsandFutureDirections
6.1. Introduction
6.2. FutureDirections
6.3. Conclusion
References
1.0. IntroductiontoGeneticAlgorithms
1.1. Introduction
Goldberg[GO89]describesGeneticAlgorithmsas:searchproceduresbasedonthemechanicsofnaturalselectionandnaturalgenetics.I.e.theyaregeneralsearchandoptimisationalgorithmsthatusethetheoriesofevolutionasatooltosolveproblemsinscienceandengineering.Thisinvolvesevolvingapopulationofcandidatesolutionstotheparticularproblem,usingoperationsinspiredbynaturalgeneticvariationandnaturalselection.
GeneticAlgorithmsare'weak'optimisationmethods.Thatistheydonotusedomain-specificknowledgeintheirsearchprocedure.Forthisreasontheycanbeusedtosolveawiderangeofproblems.Thedisadvantage,ofcourse,isthattheymaynotperformaswellasalgorithmsdesignedspecificallytosolveagivenproblem.
Fromtheverybeginning,computerscientistshavethoughtofsystemsthatwouldmimiconeormoreattributesoflife.However,itwasn'tuntilthe1960sthatGeneticAlgorithms(GAs)wereformallydevelopedbyJohnHolland,alongwithhisstudentsandcolleaguesfromtheUniversityofMichigan.Holland’soriginalgoal,however,wasnottodesignalgorithmstosolvespecificproblems,asinotherevolutionaryprogramming,buttostudythephenomenonofadaptationasitoccursinnatureandtodevelopwaysinwhichthemechanismsofnaturaladaptationmightbeimportedintocomputersystems.
Holland’sGAisamethodofmovingfromonepopulationofchromosomes(stringsofonesandzeros)toanewpopulationusingakindofnaturalselection,togetherwiththegenetics-inspiredoperationsofcrossover,mutationandinversion.
Atypicalalgorithmmightconsistofthefollowing:
Anumberofrandomlychosenguessesofthesolutiontotheproblem–theinitialpopulation.
Ameansofcalculatinghowgoodorbadeachguessiswithinthepopulation–apopulationfitnessfunction.
Amethodformixingfragmentsofthebettersolutionstoformnewandonaverageevenbettersolutions–crossover.
Anoperatortoavoidpermanentlossof(andtointroducenew)diversitywithinthesolutions–mutation.
WiththesebeingthebasiccomponentsofmostGAsitcanbeseenthattheyareasimplemethodtosolveaspecificproblem.Thedownside,however,isthattherearemanydifferentwaysofperformingthesesteps.InthisdissertationIhaveattemptedtoprovideapackagethatgivestheuserachoiceofusingsomeofthemorecommonmethodstosolvetheirparticularproblem.
NotethatHolland’sinversionoperationisrarelyusedinGAstodaysinceitsbenefits,ifany,arenotwellestablished.
1.2. SearchSpaces
Formanysearchoroptimisationproblemsinscience,engineeringandelsewhere,thereareahugeoreveninfinitenumberofpossiblesolutions.Thismeansthatinmostcasesitisimpossibletocheckeachandeverypossiblesolutioninordertofindtheoptimumorrequiredone.Oneapproachistolimitthenumberofpossibilitiestowithinachosenrangewithacertainstepsizeordistancebetweeneachone.Thismethodisusedinallproblemssolvedusingacomputer,sinceafterallthereisalimittothegranularityatwhichadigitalcomputercanrepresentaproblem.Thesetofpossiblesolutionsiscalleda“searchspace”.
Associatedwiththeideaofasearchspaceistheconceptofa“fitnesslandscape”(definedbythebiologistSewellWrightin1931).Thefitnesslandscapeisameasureofthesuccess,orfitness,ofeachsolutionwithinthesearchspace.ItisthisfitnessthatisusedtodeterminewhichsolutionsoftheGApopulationgoforwardtoproducethenewsolutions.
Theselandscapescanhavesurprisinglycomplextopographies.Forasimpleproblemoftwovariables(adjustableparameters),thefitnesslandscapecanbeviewedasathree-dimensionalplotshowingthevariationofthefitnessforvaryinginputparameters.Thisplotcanhaveanumberofpeaks(maxima)andtroughs(minima).Thehighestpeakisusuallyreferredtoastheglobalmaximumorglobaloptimum.Thelesserpeaksarereferredtoaslocalmaximaorlocaloptima.Formanysearchproblemsthegoalistofindtheglobaloptimum.However,therearesituationswhereforexampleanypointaboveacertainthresholdwillsuffice.Inotherproblemsforexampleinaestheticdesign,alargenumberofhighlyfityetdistant,andthereforedistinct,solutionsmightberequired.
ThereisonecaveatwiththenotionoffitnesslandscapewithrespecttoGAs.Justasinthenaturalworld,thefitnessofanyorganismdependsontheotherorganismsarounditandnotjustonitssurroundingsalone.ThismeansthatthefitnesslandscapeofmanytypesofGAsisinaconstantstateofchange.
IngeneralGAsattempttofindthehighestpeakinthefitnesslandscapeofagivenproblem.Theydothisusingacombinationofexploitationandexploration.Thatis,whenthealgorithmhasfoundanumberofgoodcandidatesolutionsitexploitsthembycombiningdifferentpartsofeachsolutiontoformnewcandidatesolutions.Thisprocessisknownascrossover.GAsalsoexplorethefitnesslandscapethroughthecreationofnewcandidatesolutionsbyrandomlychangingpartsofoldsolutions.Thisprocessisknownasmutation.
1.3. ASimpleExample
InordertoclarifyhowGAsworkIwillpresentasimpleexample[fromMI96].Firstlygivenaspecificproblemwemustchooseameansofencodingeachsolution.Themostcommonapproachistorepresenteachsolutionasabinarystringoflengthlbits.
Westartbyrandomlygeneratingnsuchstrings.Thesearethecandidatesolutionstotheproblem.
Bydecodingeachstringtosomevaluex,calculateitsfitness,f(x).Repeatthefollowingstepsuntilnoffspring(newpopulationmembers)havebeencreated.
Select,withreplacement(i.e.withthepossibilityofselectingthemagain),twoparentsfromthepopulationwithprobabilityproportionaltotheirfitness.
Withprobabilitypc(“crossoverprobability”)swapthebitsofthepairbeforesomerandomlychosenpointtoproducetwooffspring.
Withprobabilitypm(“mutationprobability”)changethevalueofindividualbitsoftheoffspringstring.
Ifthenumberofpopulationmembersisoddoneoftheoffspringcanbediscarded.
Replacetheoldpopulationwiththenoffspring.Calculatethefitnessofthenewmembersandstarttheprocessagain.
Eachiterationofthisprocessiscalledageneration.Fiftyto100generationsaretypicallycarriedouttosolveaproblemusingaGAandtheentiresetofgenerationsiscalledarun.Thefittestmemberovertheentirerunistypicallytakenastherequiredsolution.
Theareanumberofdetailstobefilledinwithregardtoeachstepofthealgorithmaswellasthevaluessuchasthenumberofmembersinthepopulationandtheprobabilitiesofcrossoverandmutation.Thesedetailswillbedealtwithinthenextchapter.
1.4. ComparisonbetweenBiologicalandGATerminology
NotsurprisinglymuchofthelanguageusedbytheGAcommunityhasitsoriginsinthatusedbybiologists.Someoftheanalogiesaresomewhatstrained,sinceGAsaregenerallygreatlysimplifiedcomparedwiththerealworldgeneticprocesses.
Alllivingorganismsconsistofcellswitheachcellcontainingthesamesetofoneormorechromosomes,orstringsofDNAthatserveas“ablueprint”forthatindividualorganism.Thebinary(orother)stringusedintheGAsdescribedabovecanbeconsideredtobeachromosome,butsinceonlyindividualswithasinglestringareconsideredinmostGAs,thechromosomeisalsothegenotype(Thegenotypeisthenamegiventothetotalnumberofchromosomesofanorganism,forexample,thehumangenotypeiscomprisedof23pairsofchromosomes).
Eachchromosomecanbesubdividedintogenes,eachofwhich,roughlyspeaking,encodeaparticulartraitintheorganism(e.g.eyecolour).Eachofthepossiblevaluesagenecantakeoniscalledanallele(e.g.blue,green,brownorhazel).Thepositionofageneinthechromosomeiscalleditslocus.
InGAterminology,ifweconsideramulti-variableproblem,agenecanbeconsideredasthebitsthatencodeaparticularparameterandanallele,anallowablevaluethatparametercanhave.
Theorganismorphenotypeistheresultproducedbytheexpressionofthegenotypewithinitsenvironment.InGAsthiswillbeaparticularsetofunknownparameters,oranindividualsolutionvector.
Organisms,suchashumans,whosechromosomesarearrangedinpairs,arecalleddiploid.Organismswhosechromosomesareunpairedarecalledhaploid.Mostsexuallyreproducingspeciesarediploid,however,forsimplicitymostGAsonlyconsiderunpairedchromosomes.
Innaturemutationoccurswhensinglenucleotides(elementarymoleculesofDNA)getchangedwhenbeingcopiedfromparenttooffspring.InGAsmutationconsistsofflippingbinarydigitsatarandomlychosenlocusinthechromosome.
1.5. ApplicationsofGeneticAlgorithms
Thelistsoffieldsandtypesofproblemstowhichgeneticalgorithmshavebeensuccessfullyappliedareevergrowing.Thefollowingarejustafewexamples:
Optimisationtasks:includingnumericaloptimisationandsuchcombinatorialoptimisationtaskssuchascircuitlayoutandjobscheduling.
AutomaticProgramming:theyhavebeenusedtoevolvecomputerprogramsforspecifictasks,andtodesignothercomputationalstructuressuchasautomataandsortingnetworks.
Machinelearning:GAshavebeenusedforoperationssuchasclassificationandpredictiontasksinweatherforecastingorproteinstructure.Theyhavealsobeenusedtoevolveaspectsofparticularmachinelearningsystemssuchasweightsforneuralnetworks,rulesforlearningclassifiersystemsorsymbolicproductionsystemsandsensorsforrobots.
Economics:theyhavebeenusedtomodelprocessesofinnovation,thedevelopmentofbiddingstrategies,andtheemergenceofeconomicmarkets.
Immunesystems:theyhavebeenusedtomodelaspectsofnaturalimmunesystems.
Ecology:GAshavebeenusedtomodelbiologicalarmsraces,host-parasiteco-evolution,symbiosisandresourceflow.
Populationgenetics:ThiswasHolland’soriginalreasonforthedevelopmentofGAs.Ithasbeenusedtostudyquestionssuchas“Underwhatconditionswillagenebeevolutionarilyviableforrecombination?”
Socialsystems:GAshavebeenusedtostudytheevolutionarybehaviourofsocialsystems,suchasthatininsectcoloniesandmoregenerallytheevolutionofco-operationandcommunicationinmulti-agentsystems.
TheabovelistgivesaflavourofthekindofproblemsGAsarebeingusedtosolve,butitdoesnotconclusivelyanswerthequestionofthetypeofproblemstheyshouldbeusedtosolve.
ItwaspreviouslystatedthattheGAisa‘search’tool,butwhatexactlydoes‘search’mean?MelanieMitchell[MI96]describesthreeconceptsforthemeaningofthewordsearch:
Searchforstoreddata.Thisisthetraditionallyadoptedmeaningofasearch.Itinvolvessearchingalargedatabaseofrecordsforsomepieceofdata,likelookingforaphonenumberandaddressinaphonebook.
Searchforpathstogoals.Theobjectivehereistoefficientlyfindasetofactionsthatmoveasystemfromsomeinitialstatetosomeendgoal.Anexampleofthistypeofsearchisthe“Travellingsalesmanproblem”wherethegoalistofindtheshortestroundtripbetweenNcities,visitingeachcityonlyonce.
Searchforsolutions.Thisisamoregeneralclassofsearchthansearchforpathstogoals.Thismethodinvolvesefficientlyfindingthesolutiontoaproblemfromaverylargesetofcandidatesolutions.ItisthistypeofsearchmethodforwhichGAsaremostcommonlyused.
However,evenifaparticularproblemfallsintothethirdcategory,thisdoesn'tguaranteethataGAwillbeanefficientsearchalgorithm.UnfortunatelythereisnorigorousanswerastoexactlywhatkindofproblemsGAscansolveefficiently.Thereare,however,afewguidelinesthatresearchershavefoundtoholdtrue.TheefficiencyofaGAisrelatedtothesearchspaceoftheparticularproblem.Generally,aGAwillperformwellinproblemsthathavelargesearchspaceswhoselandscapesarenotsmoothorunimodal(i.e.,consistingofasinglesmoothhill).Thatisthatthesearchspacesarenotwellunderstoodorarenoisy.GAsalsoperformwellincaseswhereitismoreimportanttofindagoodsolutionratherthantheabsoluteoptimalsolution.
Obviouslyifthesearchspaceisnotlargeallsolutionscanbesearchedexhaustivelyandthebestonecanbefound,whereasaGAmightconvergeonalocaloptimumratherthantheglobaloptimum.Ifthesearchspaceissmoothorunimodalthenagradientascentalgorithm,suchassteepestascenthillclimbingwill,bemoreefficientthanaGA.Iftheproblemiswellunderstoodthensearchmethodsthatusedomain-specificinformationcanbedesignedtooutperformanygeneral-purposemethodsuchasaGA.Somesearchmethodsasinsimplehillclimbingmightbeleadastrayinthepresenceofnoise,butbecauseGAsworkbyaccumulatingfitnessstatisticsovermanygenerationstheywillperformwellinthepresenceofasmallamountofnoise.
However,takingtheaboveintoaccountthemethodwithwhichthecandidatesolutionsareencodedcanpredominantlydictatetheperformanceoftheGA.
1.6. HoworwhydoGeneticAlgorithmswork?
ThereisnoabsolutelyconclusiveexplanationastowhyGAsdoorevenshouldworksoeffectivelyassearchalgorithms.Thereare,however,anumberoftheories,themostwidelyaccepted(atleastuntilrecently)istheschematatheoryintroducedbyHolland[HO75]andpopularisedbyGoldberg[GO89].
Thetheoryofschemas(orschemata)isbasedontheideathatGAsworkbydiscovering,emphasising,andrecombininggood“buildingblocks”ofsolutions.Thatisthatgoodsolutionstendtobecomprisedofgoodcombinationsofbitvaluesthatconferhigherfitnessonthestringsinwhichtheyarepresent.
Soaschemaisasetofbitstringsthatcanbedescribedasatemplatemadeupofones,zerosandasterisks,whereasterisksrepresent“don’tcare”values.E.g.theschema:
H=1****1
representsthesetofall6-bitstringsthatbeginandendwith1.Thestrings100101and101011arecalledinstancesoftheschemaH.
Wecanestimatethefitnessofacertainschemaastheaveragefitnessofallinstancesofthatschemapresentinthepopulationatanytime,t(averagefitness=û(H,t)).Thuswecancalculatetheapproximateincreaseordecreaseofanygivenschemaoversuccessivegenerations.Aschemawhosefitnessisaboveaveragewillproduceanexponentiallyincreasingnumberofsamples.See[MI96]pp27-30foramoreindepthanalysis.
2.0. GAOperatorsinFurtherDepth
2.1. Introduction
Havingexplainedthebasicmechanismsofgeneticalgorithmsinthepreviouschapter,inthischapterIwillattempttoexplainsomeofthesubtlerdetailsofsomeGAoperatorsandalsodelveintotheimplementationofthesefunctions.
2.2. EncodingaProblem
PerhapsthemostimportantaspectforanyGAtobesuccessfulisthemannerinwhichthecandidatesolutionsareencoded.Althoughunnatural,HollandandhisstudentsconcentratedonbinaryencodingandmuchoftheGAworldhasfollowedsuit.Thusmostofthetheoryhasbeendevelopedaroundthistypeofencoding(althoughmuchofitcanbeextendedtonon-binaryapproaches),alsotheheuristicparametersettings,suchascrossoverandmutationrates,havebeendevelopedforGAsusingbinaryencoding.
Theproblemwithbinary-valuedencodingariseswhentherangeofrealworld(phenotype)valuesarenotapowerof2,somesortofclippingorscalingisrequiredsothatallbinarygeneorchromosomecombinationsrepresentsomerealworldvalue.
Themostfrequentlyusedmethodofbinaryencodingisstandardbinarycoding(000=0,001=1,101=5etc).Analternativemethod,however,isGraycoding.Thisissimilartobinaryencodingexceptthateachsuccessivenumberonlydiffersbyonebit.Thishastheadvantagethatsinglebitchangesduringmutationhavelessofaneffectonthefitnessofthestring.Itsdisadvantageisthatitslowsexploration,theprocessofcreatingnewsolutionsthatarenotmadefrompartsofothersolutions.
Amorenaturalformofencodingistousemulti-characterorrealvaluedalphabetstoformthechromosomes.UnderHolland'sschematheory,however,multicharacterencodedstringsshouldperformworsethanthoseencodedinbinary.However,thishasbeenshownnottobetrue.ItseemstheperformancedependsontheproblemandthedetailsoftheGA–thisposesadilemmasince,ingeneral,GAsareusedtosolveproblemsaboutwhichnotenoughisknowntosolvetheminotherwaysthus,thetypeofencodingthatwillworkbestcannotbeknown.Onewayaroundthisistousethesameencodingthatwasusedforasimilarproblem.
Anothermethodistreeencoding[MI96pp35-44].Thisallowssearchspacestobeopen-endedsincethereisnolimittothesizeofthetree.However,thiscanalsoleadtopitfalls–thetreescangrowtoolargeandbecomeuncontrolled,preventingtheformationofmorestructuredcandidatesolutions.
[MI96]proposeshavingtheencodingadaptitselfsothattheGAfindstheoptimummethod.Thisalsosolvestheproblemoffixed-lengthencodinglimitingthecomplexityofthecandidatesolutions.
2.3.0. Selection
Selectionistheoperationwherebycandidatesolutions(chromosomes)areselectedforreproduction.Ingeneraltheprobabilityofselectionshouldbeproportionaltothefitnessofthechromosomeinquestion.Tomakethispossiblewemustmakethefollowingassumptions:firstly,theremustbesomemeasurablequalityinordertosolvetheproblem-thefitness,secondly,thatthesolutioncanbefoundbymaximisingthefitness,andlastly,thatallfitnessvalues,bothgoodandbad,shouldbepositive.Withtheseconditionssatisfiedthereareanumberofdifferentwaysinwhichwecanselectmembersfromthepopulationforcrossover.Themostcommonoftheseisfitnessproportionateselection.
2.3.1. FitnessProportionateSelection
Iffiisthefitnessofindividualiandistheaveragepopulationfitness,whereNisthepopulationsize,thentheprobabilityofanindividualibeingselectedforcrossoveris:
Thiscanbeimplementedusingtheroulettewheelalgorithm.Asthenamesuggestsawheelisconstructedwithamarkerforeachmemberinthepopulation,thesizeofeachmarkerbeingproportionaltothatindividual'sfitness.Thusasthewheelisspuntheprobabilityoftheroulettelandingonthemarkerforindividualiispi.
Thisalgorithmcanbesimulatedusingthecumulativedistributionrepresentation-Arandomnumber,r,isgeneratedbetweenzeroandthesumofeachindividual'sfitnessvalue.Thefirstpopulationmemberwhosefitness,addedtothefitnessoftheprecedingmembers,isgreaterthanorequaltorisreturned.
Thereare,however,problemswiththismethodofselectionundercertainconditions.Considerthecasewhenacertainindividual'sfitnessisverymuchgreaterthattheaveragepopulationfitness.Underfitnessproportionateselectionthismemberwillbechosenmuchmorefrequentlythanothermembersinthepopulation.Thus,overafewgenerationsthegenepoolwillbecomesaturatedwithitsgenes.Ifthismember'sphenotyperesidesclosetoalocalmaximum,andnottheglobalmaximum,inthefitnesslandscapethentheGA,withoutthehelpofmutationorevenhyper-mutation(mutationwithaveryhighmutationrate-discussedlater),canbecomestuckatthislocalmaximum.Thisisknownasprematureconvergence.
Anotherproblemwithfitnessproportionateselectionisthatofstagnation.Thisgenerallyoccurstowardstheendofarun,althoughitcanhappenatanytime.Ifallindividualshavesimilarfitnesses,thenfitnessproportionateselectionwillimposelessselectionpressureandsowillbealmostaslikelytopickthefittestmembersastheleastfitmembers.
Boththeseproblemscanbesolvedusingfitnessscalingtechniques,whichwillbediscussedin§2.4.However,therearedifferentselectionmethodsavailablethatdonotsufferfromtheaboveproblems.
2.3.2. RankSelection
Inthisselectionoperationallindividualsaresortedbyincreasingvaluesoffitness.Eachindividualisthenassignedaprobability,pi,ofbeingselectedfromsomepriorprobabilitydistribution.Typicaldistributionsinclude:
Linear: pi=ai+b, (a<0)
and
Negativeexponential: pi=ae(bi+c)
Fig2.1 Plotoflinearandnegativeexponentialdistributionsusedforrankselection.
Thevaluesofaandbarecalculatedbysatisfyingthefollowingconditions:
Thesumoverallmembersofeachindividual'sselectionprobabilitymustbeone.
Theratioofthehighesttolowestprobabilitiesisc.
Theseresultinthefollowingequations:
whereNisthepopulationsize.Bychoosinganappropriatevalueforcwecandictatehowselectioniscarriedout.Generallycistakenas~2.
Rankselectionsolvestheproblemofprematureconvergenceandstagnationandthesizeofthegapsbetweenfitnessesbecomeirrelevant.However,thereislittleevidenceofthisselectionmethodoccurringinnature,makingitsusedifficulttojustify.Thereorderingprocessalsointroducesacomputationaloverheadmakingitlessengaging.
2.3.3. TournamentSelection
Thiscanbeviewedasanoisyversionofrankselection.Theselectionprocessisthus:selectagroupofN(N2)members,thenselectthefittestmemberofthisgroupanddiscardtherest.
Tournamentselectioninheritstheadvantagesofrankselectionbutdoesnotrequiretheglobalreorderingofthepopulationandismoreinspiredbynature.
2.4.0. FitnessScaling
Thetwoundesirablecharacteristicsoffitnessproportionateselection,prematureconvergenceandstagnation,cancauseproblemswiththeselectionprocedure.Ratherthanchoosinganalternativeselectionmethod,onecanchoosetoscalethefitnessvaluessoastoreducetheseunwantedeffects,whilestillusingfitnessproportionateselectionmethodssuchasroulettewheelselection.TherearethreemaintypesofscalingusedbytheGAcommunity.
2.4.1. LinearScaling
Thefitnessofeachindividual,f,isreplacedbyf'=a.f+b
whereaandbarechosensothat:
1. Thescaledaveragefitnessisequaltotherawaveragefitness().
2. Themaximumvalueofthescaledfitnessissomeconstanttimesthe averagefitness.Thisconstant,c,isthenumberofexpectedcopies desiredforthebestindividual(usuallyc=2).
Theseconditionsresultinthefollowingequationsforaandb:
Oneproblemwithlinearscaling,particularlyifisclosetofmaxorifagivenfitnessisverymuchlessthan,isthatfitnessvaluescanbecomenegative.Tosolvethiswecansetanynegativefitnessvaluestozero.This,however,isobviouslyundesirablesincethismeansthattheseindividualswillneverbeselected.Anotherwaytosolvethisproblemistouseanalternativescalingmethodsuchassigmatruncation.
2.4.2. SigmaTruncation
Withsigmatruncation,fisreplacedbyf'=f-(-c.).Whereisthepopulationstandarddeviation,c,isareasonablemultipleof(Usually1c3).Sigmatruncationremovestheproblemofscalingtonegativevalues.Truncatedfitness
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆大坪轻轨施工方案
- 重庆螺旋钢板仓施工方案
- 2025年中国电子通讯产品制造行业发展前景预测及投资战略咨询报告
- 吸湿排汗全涤小PK布行业深度研究报告
- 金属加工机械项目可行性研究报告
- 2025年钢结构门项目可行性研究报告-20250101-185650
- 张拉膜结构施工方案
- 油品装卸栈桥施工方案
- 化工工程居间合同范例
- 酒店业土方调运合作
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 妊娠咳嗽的临床特征
- 国家公务员考试(面试)试题及解答参考(2024年)
- 《阻燃材料与技术》课件 第6讲 阻燃纤维及织物
- 2024年金融理财-担保公司考试近5年真题附答案
- 泰山产业领军人才申报书
- 高中语文古代文学课件:先秦文学
- 三创赛获奖-非遗文化创新创业计划书
评论
0/150
提交评论