2023-2024学年浙江省杭州萧山回澜重点中学中考数学猜题卷含解析_第1页
2023-2024学年浙江省杭州萧山回澜重点中学中考数学猜题卷含解析_第2页
2023-2024学年浙江省杭州萧山回澜重点中学中考数学猜题卷含解析_第3页
2023-2024学年浙江省杭州萧山回澜重点中学中考数学猜题卷含解析_第4页
2023-2024学年浙江省杭州萧山回澜重点中学中考数学猜题卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省杭州萧山回澜重点中学中考数学猜题卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形2.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,243.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件4.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.15.二次函数的图象如图所示,则下列各式中错误的是()A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=06.如图,直线AB与▱MNPQ的四边所在直线分别交于A、B、C、D,则图中的相似三角形有()A.4对B.5对C.6对D.7对7.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A.5 B.4 C.3 D.28.下列手机手势解锁图案中,是轴对称图形的是()A. B. C. D.9.一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.10.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定11.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20° D.15°12.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度二、填空题:(本大题共6个小题,每小题4分,共24分.)13.把多项式9x3﹣x分解因式的结果是_____.14.计算(2a)3的结果等于__.15.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.16.函数y=中,自变量x的取值范围是________.17.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有_____个,第n幅图中共有_____个.18.抛物线向右平移1个单位,再向下平移2个单位所得抛物线是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).20.(6分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(6分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.22.(8分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.23.(8分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.24.(10分)画出二次函数y=(x﹣1)2的图象.25.(10分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.26.(12分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).27.(12分)计算:12+(13)﹣2﹣|1﹣3|﹣(π+1)0

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.2、A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.3、A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.4、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5、B【解析】

根据二次函数的图象与性质逐一判断即可.【详解】解:由图象可知抛物线开口向上,∴,∵对称轴为,∴,∴,∴,故D正确,又∵抛物线与y轴交于y轴的负半轴,∴,∴,故A正确;当x=1时,,即,故B错误;当x=-1时,即,∴,故C正确,故答案为:B.【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.6、C【解析】由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.故选C.7、C【解析】

根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.8、D【解析】

根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.9、B【解析】

根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.11、B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,12、C【解析】

根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.故选C.考点:函数的图象、行程问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x(3x+1)(3x﹣1)【解析】

提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.【详解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).【点睛】本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.14、8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方15、①②③【解析】

由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.故正确的序号是:①②③.【点睛】本题考查了一次函数的应用.16、x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1-x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.17、72n﹣1【解析】

根据题意分析可得:第1幅图中有1个,第2幅图中有2×2-1=3个,第3幅图中有2×3-1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.

第2幅图中有2×2-1=3个.

第3幅图中有2×3-1=5个.

第4幅图中有2×4-1=7个.

….

可以发现,每个图形都比前一个图形多2个.

故第n幅图中共有(2n-1)个.

故答案为7;2n-1.点睛:考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.18、(或)【解析】

将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可.【详解】解:化为顶点式得:,∴向右平移1个单位,再向下平移2个单位得:,化为一般式得:,故答案为:(或).【点睛】此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)600人(2)【解析】

(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【详解】(1)(人),∴最喜欢方式A的有600人(2)列表法:ABCAA,AA,BA,CBB,AB,BB,CCC,AC,BC,C树状法:∴(同一种购票方式)【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.20、55米【解析】

由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB为55米.【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.21、详见解析.【解析】试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.试题解析:证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.22、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【详解】(1)∵A(0,3),B(,0),∴AB=2,∵点C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D(﹣,0),∴m=,n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴AD=AB=2,∴m=2;∴D(,3)(3)如图2,∵直线y=kx+3k=k(x+3),∴直线y=kx+3k恒过一点P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA切⊙B于A,∴点F就是直线y=kx+3k与⊙B的切点,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,当直线y=kx+3k与⊙A相切时交y轴于G切点为E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直线y=kx+3k上至少存在一个线段AB的“等长点”,∴﹣≤k≤,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.23、20(1)y=2x-5,y=;(2)n=-4或n=1【解析】

(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;

(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.【详解】解:(1)∵点A的坐标为(4,3),

∴OA=5,

∵OA=OB,

∴OB=5,

∵点B在y轴的负半轴上,

∴点B的坐标为(0,-5),

将点A(4,3)代入反比例函数解析式y=中,

∴反比例函数解析式为y=,

将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,

∴一次函数解析式为y=2x-5;

(2)由(1)知k=2,

则点N的坐标为(2,6),

∵NP=NM,

∴点M坐标为(2,0)或(2,12),

分别代入y=2x-n可得:n=-4或n=1.【点睛】本题主要考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论