版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数y=ax2+bx+c
的图象
二次函数y=ax2+bx+c的图象一般地,抛物线y=a(x-h)2+k与y=ax2的
相同,
不同知识回顾:y=ax2y=a(x-h)2+k形状位置一般地,抛物线y=a(x-h)2+k与y=ax2的y=ax2y=ax2+k
y=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移y=ax2y=ax2+ky=a(x–h抛物线y=a(x-h)2+k的图象与性质:1.当a﹥0时,开口
,当a﹤0时,开口
,2.对称轴是
;3.顶点坐标是
。向上向下(h,k)直线x=h抛物线y=a(x-h)2+k的图象与性质:1.当a﹥0时,开二次函数开口方向对称轴顶点坐标y=2(x+3)2+5y=-3x(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-6向上(1,-2)向下向下(3,7)(2,-6)向上直线x=-3直线x=1直线x=3直线x=2(-3,5)练习:思考二次函数开口方向对称轴顶点坐标y=2(x+3)2+5y=探究:一般地,我们可以用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴y=ax2+bx+c
探究:一般地,我们可以用配方法求抛物线y=ax2+bx+c(二次函数y=ax2+bx+c(a≠0)归纳二次函数y=ax2+bx+c(a≠0)归纳例1:利用公式法求下列抛物线的对称轴和顶点坐标,并指出它的最值。(1)y=x2+4x-1(2)y=-0.5x2+2x-1例1:利用公式法求下列抛物线的对称轴和顶点坐标,并指出它的最1、利用公式法求出下列抛物线对称轴及顶点坐标,并说出它的开口方向及最值.
?(1)y=3x2+2x(2)y=-x2-2x(3)y=-2x2+8x-8练习:1、利用公式法求出下列抛物线对称轴及顶点坐标,并说出它的开口3、已知一次函数y=-2x+c与二次函数y=ax2+bx-4的图象都经过点A(1,-1),二次函数的对称轴是直线x=-1,请求出一次函数和二次函数的表达式.2、当m=_____时,抛物线y=mx2
+2(m+2)x+m+3的对称轴是y轴;当m=_____时,图象与y轴交点的纵坐标是1;当m=_____时,函数的最小值是-2.4.写出一个二次函数的解析式,使它的顶点在第二象限且开口向下(要求用一般式表示)3、已知一次函数y=-2x+c与二次函数y=ax2+bx-5.如图,在同一坐标系中,函数y=ax+b与y=ax2+bx(ab≠0)的图象只可能是()xyoABxyoCxyoDxyo5.如图,在同一坐标系中,函数y=ax+b与y=ax2+bx6.二次函数y=ax2+bx+c的图象如图所示,下列各式中是正数的有()a②b③c
a+b+c⑤a-b+c⑥
4a+b⑦2a+bBy-1...12xyA.5个B.4个C.3个D.2个6.二次函数y=ax2+bx+c的图象如图所示,下列各式中是7.已知抛物线y=ax2+bx+c的图象如图所示,下列结论:①a+b+c<0②a-b+c>0③acb>0④b=2a,其中正确的结论的个数是()A.4B.3C.2D.17.已知抛物线y=ax2+bx+c的图象如图所示,例2.用总长为60m的篱笆墙围成矩形场地,矩形面积S随矩形一边长l的变化而变化,当l为多少时,场地的面积S最大?
?实际应用例2.用总长为60m的篱笆墙围成矩形场地,矩形面积S随矩形一
?实际应用已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少??实际应用已知直角三角形两条直角边的和等于8,两条直角边各心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30),y值越大表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增加?
x在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?第几分钟时,学生的接受能力最强?思考:心理学家发现,学生对概念的接受能力y与提出思考1.抛物线y=-x2+mx-n的顶点坐标是(2,-3),求m,n的值。2.不画图象,说明抛物线y=-x2+4x+5可由抛物线y=-x2经过怎样的平移得到?1.抛物线y=-x2+mx-n的顶点坐标是2.不画图象,说明3.已知抛物线y=ax2+bx+c的图象如图所示,试求出a,b,c的值。230yx3.已知抛物线y=ax2+bx+c的图象如图所示,试求出a,思考二次函数解析式有哪几种表达式?一般式:y=ax2+bx+c顶点式:y=a(x-h)2+k两根式:y=a(x-x1)(x-x2)思考二次函数解析式有哪几种表达式?一般式:y=ax2+b一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k解:设所求的二次函数为y=ax2+bx+c由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:因此:所求二次函数是:a=2,b=-3,c=5y=2x2-3x+5已知一个二次函数的图象过点(-1,10)、(1,4)、(2,7)三点,求这个函数的解析式?oxy例1一般式:y=ax2+bx+c两根式:顶点式:解:设所求的二一、一般式
1.已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函数的解析式是_______。一、一般式2.已知一个二次函数的图象经过(-1,8),(1,2),(2,5)三点。求这个函数的解析式2.已知一个二次函数的图象经过解:设所求的二次函数为y=a(x+1)2-3由条件得:已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求抛物线的解析式?yox点(0,-5)在抛物线上a-3=-5,得a=-2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-5一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例2解:设所求的二次函数为y=a(x+1)2-3由条件得:已知二、顶点式
1.已知抛物线y=ax2+bx+c的顶点是A(-1,4)且经过点(1,2),求其解析式。二、顶点式2、已知抛物线的顶点为(2,3),且过点(1,4),求这个函数的解析式。2、已知抛物线的顶点为解:设所求的二次函数为y=a(x+1)(x-1)由条件得:已知抛物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?yox点M(0,1)在抛物线上所以:a(0+1)(0-1)=1得:
a=-1故所求的抛物线解析式为y=-(x+1)(x-1)即:y=-x2+1一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例3解:设所求的二次函数为y=a(x+1)(x-1)由条件得:三、交点式
1.已知抛物线y=-2x2+8x-9的顶点为A点,若二次函数y=ax2+bx+c的图象经过A点,且与x轴交于B(0,0)、C(3,0)两点,试求这个二次函数的解析式。三、交点式例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线的解析式为y=ax2+bx+c,解:根据题意可知抛物线经过(0,0),(20,16)和(40,0)三点可得方程组通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式.过程较繁杂,评价例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度例例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=a(x-20)2+16
解:根据题意可知∵点(0,0)在抛物线上,通过利用条件中的顶点和过愿点选用顶点式求解,方法比较灵活评价∴所求抛物线解析式为
例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度例例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=ax(x-40)解:根据题意可知∵点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷评价例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度例课堂小结求二次函数解析式的一般方法:已知图象上三点或三对的对应值,通常选择一般式已知图象的顶点坐标(对称轴和最值)通常选择顶点式已知图象与x轴的两个交点的横x1、x2,通常选择两根式yxo确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式,课堂小结求二次函数解析式的一般方法:已知图象上三点或名言摘抄1、抓紧学习,抓住中心,宁精勿杂,宁专勿多。——周恩来2、与雄心壮志相伴而来的,应老老实实循环渐进的学习方法。——华罗庚3、惟有学习,不断地学习,才能使人聪明,惟有努力,不断地努力,才会出现才能。——华罗庚4、发愤早为好,苟晚休嫌迟。最忌不努力,一生都无知。——华罗庚5、自学,不怕起点低,就怕不到底。——华罗庚6、聪明出于勤奋,天才在于积累。——华罗庚7、应当随时学习,学习一切;应该集中全力,以求知道得更多,知道一切。——高尔基8、学习永远不晚。——高尔基9、学习是我们随身的财产,我们自己无论走在什么地方,我们的学习也跟着我们在一起。——莎士比亚10、人不光是靠他生来就拥有的一切,而是靠他从学习中所得到的一切来造就自己。——歌德11、单学知识仍然是蠢人。——歌德12、终身努力便是天才。——门捷列夫13、知之为知之,不知为不知,学而时习之,不亦说乎?三人行,必有我师焉。——孔子14、三人行,必有我师也。择其善者而从之,其不善者而改之。——孔子15、知之者不如好之者,好之者不如乐之者。——孔子16、学而不厌,诲人不倦。——孔子17、己所不欲,勿施于人。——孔子18、学而不思则罔,思而不学则殆。——孔子19、敏而好学,不耻下问。——孔子20、兴于《诗》,立于礼,成于乐。——孔子21、不要企图无所不知,否则你将一无所知。——德谟克利特22、学习知识要善于思考,思考再思考,我就是用这个方法成为科学家的。——爱因斯坦23、要想有知识,就必须学习,顽强地耐心地学习。——斯大林24、向所有人学习,不论是敌人或朋友
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度停车场排水系统施工合同规范文本3篇
- 固化剂采购合同6篇
- 编程软件课程设计
- 抗肿瘤新药行业专题
- 脱甲烷塔课程设计
- 2024幼儿园招生工作计划(31篇)
- 算法课的课程设计
- 线上课程设计基本要素
- 算数运算测试java课程设计
- 药剂课程设计报告
- 江苏省期无锡市天一实验学校2023-2024学年英语七年级第二学期期末达标检测试题含答案
- 耕地占补平衡系统课件
- 2022年山东师范大学自考英语(二)练习题(附答案解析)
- 医院工作流程图较全
- NB/T 11431-2023土地整治煤矸石回填技术规范
- 医疗器械集中采购文件(2024版)
- 上海市2024-2025学年高一语文下学期分科检测试题含解析
- 血液透析高钾血症的护理查房
- 佛山市2022-2023学年七年级上学期期末考试数学试题【带答案】
- 使用权资产实质性程序
- 保险公司增额终身寿主讲课件
评论
0/150
提交评论