版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省大丰区金丰路初级中学2024年中考数学最后冲刺浓缩精华卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180m1的该市居民家庭按第一档水价交费;②年用水量不超过240m1的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150~180m1之间;④该市居民家庭年用水量的众数约为110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④2.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.3.的相反数是()A. B. C.3 D.-34.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.55.估计的值在()A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间6.tan45º的值为()A. B.1 C. D.7.如图,在△ABC中,DE∥BC,若,则等于()A. B. C. D.8.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有()A.0个 B.1个 C.2个 D.3个9.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80° B.50° C.30° D.20°10.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小二、填空题(共7小题,每小题3分,满分21分)11.已知平面直角坐标系中的点A(2,﹣4)与点B关于原点中心对称,则点B的坐标为_____12.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.13.抛物线向右平移1个单位,再向下平移2个单位所得抛物线是__________.14.如果a+b=2,那么代数式(a﹣)÷的值是______.15.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.16.函数y=中自变量x的取值范围是___________.17.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.三、解答题(共7小题,满分69分)18.(10分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.19.(5分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长.20.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.21.(10分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).22.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.23.(12分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?24.(14分)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).阅读2:函数(常数m>0,x>0),由阅读1结论可知:,所以当即时,函数的最小值为.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时,的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
利用条形统计图结合中位数和中位数的定义分别分析得出答案.【详解】①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;
②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),
∴×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;
③∵5万个数据的中间是第25000和25001的平均数,
∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;
④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,
故选B.【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.2、B【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.3、B【解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.4、B【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;故选:B.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.5、B【解析】∵9<11<16,∴,∴故选B.6、B【解析】
解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.7、C【解析】试题解析::∵DE∥BC,∴,故选C.考点:平行线分线段成比例.8、B【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b(k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.9、D【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.10、B【解析】
根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、(﹣2,4)【解析】
根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【详解】解:∵点A(2,-4)与点B关于原点中心对称,
∴点B的坐标为:(-2,4).
故答案为:(-2,4).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.12、【解析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G,如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案为.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.13、(或)【解析】
将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可.【详解】解:化为顶点式得:,∴向右平移1个单位,再向下平移2个单位得:,化为一般式得:,故答案为:(或).【点睛】此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.14、2【解析】分析:根据分式的运算法则即可求出答案.详解:当a+b=2时,原式===a+b=2故答案为:2点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.15、1【解析】
作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.【详解】作AB的中点E,连接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5,∵M是BD的中点,E是AB的中点,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值为1,故答案为1.【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.16、x≥﹣且x≠1【解析】
试题解析:根据题意得:解得:x≥﹣且x≠1.故答案为:x≥﹣且x≠1.17、1【解析】
根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.【详解】解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
则1张普通贺卡为:元,
由题意得:,
,
答:剩下的钱恰好还能买1张普通贺卡.
故答案为:1.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.三、解答题(共7小题,满分69分)18、(1)详见解析;(2).【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.试题解析:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.19、(1)证明见解析;(2);【解析】
(1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5,根据勾股定理计算即可.【详解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四边形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.20、(1)50,108°(2)见解析;(3)600人;(4)不正确,见解析.【解析】
(1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;(2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;(3)总人数乘以样本中A所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【详解】(1)这次被抽查的学生共有25÷50%=50人,扇形统计图中,“A组”所对应的圆心度数为360°×=108°,故答案为50、108°;(2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.21、(1)2m(2)27m【解析】
(1)首先构造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【详解】解:(1)过点E作EM⊥AB,垂足为M.设AB为x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教学楼的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之间的距离约为27m.22、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB
D′=∠ABD,B
D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB
D′=∠ABD,B
D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.【详解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑设计行业行政后勤工作总结
- 2024年度直系亲属间房屋买卖及装修合同3篇
- 生物科技行业创新研发方向
- 幼儿园工作总结播种希望绽放未来
- 在工作中培养领导力的实践计划
- 放射科护士的工作感悟
- 电力水务行业卫生维护
- 高三毕业自我评价汇编
- 游乐园保安员工作总结
- 互联网行业广告推广总结
- TFJPACIA 001-2024 氟石膏规程规范
- 2024年1月国家开放大学专科《法理学》期末纸质考试试题及答案
- 阴地买卖合同范本
- GH/T 1451-2024调配蜂蜜水
- 养老机构保安工作总结
- 送温暖活动困难职工帮扶申请表
- 小学六年级英语教学小助手的培养研究
- 10S505 柔性接口给水管道支墩
- 2024北京高考语文试卷(真题+答案)
- GB/T 35603-2024绿色产品评价卫生陶瓷
- 手机摄影教程
评论
0/150
提交评论