版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京首都师大附中2024年中考数学四模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.2.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30° C.45° D.50°4.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形5.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.66.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h7.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm28.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有()A.5个 B.4个 C.3个 D.2个9.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、1510.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A. B. C. D.11.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()A.m<n B.m≤n C.m>n D.m≥n12.如图是由长方体和圆柱组成的几何体,它的俯视图是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.14.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.15.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.17.若二次根式有意义,则x的取值范围为__________.18.如图所示,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.20.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.21.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.22.(8分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到米)(参考数据:,,)23.(8分)先化简,再求值:()÷,其中a=+1.24.(10分)(5分)计算:(125.(10分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.26.(12分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.求证:是⊙的切线;若,且,求⊙的半径与线段的长.27.(12分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.2、B【解析】∵关于x的不等式ax<b的解为x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集为x<2的是B选项中的不等式.故选B.3、D【解析】
根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.4、C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A.正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B.平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C.矩形,既是中心对称图形又是轴对称图形,故本选项正确.D.等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.5、B【解析】
n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则
(n-2)•180°=900°,
解得:n=1.
则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.6、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.7、A【解析】
根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=12×3π×3=4.5πcm2故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.8、C【解析】试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.考点:等腰三角形的性质;勾股定理.9、B【解析】
根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.10、D【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等边三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D.【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.11、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解:∵∴此抛物线对称轴为∵抛物线与x轴交于两点,∴当时,得∵∴∴故选C.点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,12、A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】抛物线的对称轴为x=-.∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,∴点C的横坐标为-1.∵四边形ABCD为菱形,∴AB=BC=AD=1,∴点D的坐标为(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD•OB=1×4=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.14、(-5,4)【解析】试题解析:由于图形平移过程中,对应点的平移规律相同,
由点A到点A'可知,点的横坐标减6,纵坐标加3,
故点B'的坐标为即
故答案为:15、120°【解析】
设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.16、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m17、x≥﹣.【解析】
考点:二次根式有意义的条件.根据二次根式的意义,被开方数是非负数求解.解:根据题意得:1+2x≥0,解得x≥-.故答案为x≥-.18、【解析】解:连接AC,交y轴于D.∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2).∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.故答案为y=.点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解析】
(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.20、(1)见解析(2)6【解析】
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四边形ABCD是平行四边形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:21、见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.22、6.58米【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.试题解析:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.23、,.【解析】
根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【详解】解:()÷====,当a=+1时,原式==.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、8+23【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.试题解析:原式=9+1-(2-3)+2×3考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.25、见解析.【解析】
(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26、(1)证明参见解析;(2)半径长为,=.【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.【详解】解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴.设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.27、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政教处德育工作计划范文
- 禁止吸烟工作计划禁止吸烟
- 实验小学2025年学校工作计划
- 8中医科年度工作计划
- 个人工作提升计划清单应用清单范例
- 银行员工周工作计划
- 《骨折术后功能锻炼》课件
- 突发环境事件应急预案合同模板
- 焊制杂粮仓合同范本
- 天津大学接收一般国内访问学者协议书
- 供应链与生产制造L1-L4级高阶流程规划框架 相关两份资料
- 厨房里的危险课件
- 牛津译林版(2024新版)七年级上册英语Unit 8 单元测试卷(含答案)
- 2024年中国人保行测笔试题库
- GB/T 6553-2024严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法
- 住建部设计施工合同范本(2024版)
- 公路养护设计文件编制指南
- 冷链物流配送全流程优化方案
- Unit2Section A 1a-2b课件2024-2025学年人教版英语九年级全册
- office操作技巧手册系列-excel
- 2023-2024学年全国小学二年级下语文人教版期末考试试卷(含答案解析)
评论
0/150
提交评论