光致发光材料性能测量方法_第1页
光致发光材料性能测量方法_第2页
光致发光材料性能测量方法_第3页
光致发光材料性能测量方法_第4页
光致发光材料性能测量方法_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光致发光材料的原理和性能表征专业:微电子与固体电子学发光的相关概念光致发光原理光致发光材料的常见应用光致发光材料主要特性测量发光的相关概念发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。光致发光(Photoluminescence)是用光激发发光材料引起的发光现象。固体吸收外界能量后很多情形是转变为热,并非在任何情况下都能发光,只有当固体中存在发光中心时才能有效地发光。发光中心通常是由杂质离子或晶格缺陷构成。发光中心吸收外界能量后从基态激发到激发态,当从激发态回到基态时就以发光形式释放出能量。光致发光原理:位形坐标模

晶体中的离子其吸收光谱与发射光谱与自由离子不同。自由离子的吸收光谱与发射光谱的能量相同,并且都是窄带谱或锐线谱(0.01cm-1)。而晶体中离子的发射光谱的能量均低于吸收光谱的能量,并且是宽带谱。这是由于晶格振动对离子的影响所致。与发光中心相联系的电子跃迁可以和基质晶体中的原子(离子)交换能量,发光中心离子与周围晶格离子之间的相对位置、振动频率以及中心离子的能级受到晶体势场影响等。因此,应当把激活剂离子及其周围晶格离子看作一个整体来考虑。相对来说,由于原子质量比电子大得多,运动也慢得多,故在电子跃迁中,可以认为晶体中原子间的相对位置和运动速率是恒定不变的。这样,就可以采用一种所谓的位形坐标来讨论发光中心的吸收和发射过程。

所谓位形坐标图,就是用纵坐标表示晶体中发光中心的势能,其中包括电子和离子的势能以及相互作用在内的整个体系的能量;横坐标则表示中心离子和周围离子的位形(Configration),其中包括离子之间相对位置等因素在内的一个笼统的位置概念。一般的也可代用粒子间核间距作横坐标。图1是发光中心基态的位形坐标示意图。图中连续的曲线表示势能作为发光中心离子核间距函数的定量变化关系,它在平衡距离re处有一个极小值,水平线ν0、ν1、ν2……表示粒子在基态具有的不同量子振动态。图1发光中心基态的势能图光致发光材料性能测量方法图2给出了基态和激发态的位形示意图,由此可以解释发光的许多特性。激活过程包括电子从基态能级A跃迁到激发态的较高能级B产生一个活性中心。依照弗兰克-康登原理,这个过程体系能量从A垂直上升到B,而离子的位形基本不变。但在激发态,由于离子松弛(即位形改变),电子以热能形式散射一部分能量返到新激发态能级C形成新的活性中心。那么,发光过程就是电子从活化中心C回到原来基态A或D。显然,激活过程能量ΔEAB>ΔECA或ΔECD。这就解释了斯托克位移。

图2发光中心基态和激发态的势能图

应用之一:解释斯托克位移应用之二:解释发光“热淬灭”效应任何发光材料,当温度升高到一定温度时,发光强度会显著降低。这就是所谓的发光“热淬灭”效应(Thermalquenchingeffect)。利用图2可以解释这一现象。在图2中,基态和激发态的势能曲线交叉于E点。在该点,激发态的离子在能量不改变的情况下就可以回到基态(E也是基态势能曲线上的一点),然后再通过一系列的改变振动回到基态的低能级上去。因此,E点代表一个“溢出点”(SpillorerPoint)。如果处于激发态的离子能获得足够的振动能而达到E点,它就溢出了基态的振动能级。如果这样,全部能量就都以振动能的形式释放出来,因而没有发光产生。显然,E点的能量是临界的。一般说来,温度升高,离子热能增大,依次进入较高振动能级,就可能达到E点。图2发光中心基态和激发态的势能图

另外,在吸收了光以后,离子晶格有一定弛豫,故平衡位置re只有统计平均的意义,实际上是一个极小的区间,因此吸收光谱就包括许多频率(或波长)而形成宽带。这就是固体中离子光谱呈带状的原因。在上述热淬灭现象的那种情况中,激发离子通过把振动能传递给环境——基质晶格,而失掉了其剩余的能量,返回到较低的能级上。这种跃迁过程不发射电磁波,即光,因而称为非辐射跃迁(nonrediativetransition).类似这种非辐射跃迁,在敏活磷光体的机制中还包括一类非辐射能量传递(nonrediativeenergytransition)。图3说明这种情况。应用之三:解释非辐射跃迁图3某些杂质对发光材料有“毒物”作用,激发光因材料含有毒物而淬灭。毒物效应往往是以非辐射能传递方式起作用的:能量或从敏活剂或激活剂传递到毒物上,而后者将能量以振动能散射到基质晶格中,以致活性中心不能发光。具有非辐射跃迁的离子有Fe3+、Co2+、Ni2+等,因而在制备磷光材料中应当杜绝这些杂质的存在。应用之四:解释“毒物”作用光致发光材料的常见应用荧光灯LED激光夜明设施生物荧光标记太阳能电池荧光灯(日光灯、节能灯)荧光灯(fluorescentlamp)是一种充有氩气的低气压汞蒸气的气体放电灯,在低压汞蒸气放电过程中会产生大量的波长为253.7mm的紫外线,以及少量波长为185nm的紫外线和可见光。在灯管表面涂有荧光粉,可以将波长为253.7nm的紫外线转化为可见光。荧光灯按外形结构可以分为两大类:直管型荧光灯和异型荧光灯。按所涂荧光粉的不同又有日光色、冷色和暖色荧光灯之分。LED白光LED的制作方案红、绿、蓝三色LED实现白光LED生产成本最高,由于三种颜色的LED量子效率不同,而且随着温度和驱动电流的变化不一致,随时间的衰减速度也各不相同,红、绿、蓝LED的衰减速率依次上升。因此,为了保持颜色的稳定,需要对三种颜色分别加反馈电路进行补偿,导致电路复杂,而且会造成效率损失。固体激光器激光器是受激发射光放大器。激光器发射的光就是激光。激光束可用于加工高熔点材料,也可用于医疗、精密计量、测距、全息检测、农作物育种、同位素分离、催化、信息处理、引发核聚变、大气污染监测以及基本科学研究各方面,有力地促进了物理、化学、生物、信息等诸多学科的发展。激光器按其工作物质可以还分为固体激光器、气体激光器和液体染料激光器。可见,激光工作物质对激光器的发展起着决定性的作用。而固体激光晶体的研究和发展是固体化学的一个重要领域。激光晶体激活和发光过程:激活过程是将活化中心注入到激发态,称作激励。这样的活化中心具有合理的寿命。换句话说,这些活化中心受激后并不立即发射能量回到基态,而是待激励遍及“全域”。因而激发态比基态具有更多的活化中心。发光时,从一个活化中心发出的光刺激其他活化中心,以致辐射在整个相中进行,于是就构成了相干辐射的强烈光束或脉冲。

能量(103cm-1)

4F1204F2

非辐射跃迁

10激活2E

激光693.3nm04A2基态

红宝石晶体中Cr3+的能级和激光发射用强可见光照射到红宝石晶体上,Cr3+铬离子的d电子从基态4A2激发到较高的激发态4F1、4F2能级。这些能级上的电子通过非辐射过程很快回到稍低一些的能级2E。2E激发态能级的寿命非常长,约为5×10-3秒。这意味着有足够的时间可以将这种激发状况普遍化。从能级2E回到基态就产生激光。在这一转变过程,晶体相中许多离子互相激励、衰变,便产生了强的波长为693nm的相干红光脉冲。夜明设施(长余辉材料)所谓长余辉发光是指发光材料在停止激发后,发光不会立即消失,而是持续较长时间(从数秒到几十个小时)的发光现象。这种材料在吸收可见光或者紫外光时能够储存能量,然后以可见光的形式将被存储能量缓慢释放,也就成为了一种长余辉发光。在光线较暗的场所、黑夜或者突然照明断电的时候,这种材料能起到应急显示、安全照明的作用。没有放射性、安全可靠、结构稳定。一般认为长余辉材料的发光应该经历以下几个过程i)基质晶格激活剂离子吸收能量,此能量可以是可见光,也可以是同位素离子辐照的射线。ii)被吸收的能量以别的形式被存储。iii)能量被传递给激活剂离子,将激活剂离子的外层电子从基态激发至激发态。iv)电子从激发态跃迁至基态从而产生激活剂离子的特征发射。生物荧光标记荧光探针技术是一种利用探针化合物的光物理和光化学特征,在分子水平上研究某些体系的物理、化学过程和检测某种特殊环境材料的结构及物理性质的方法。由于大多数生物分子本身无荧光或荧光较弱,检测灵敏度较低,人们用强荧光的标记试剂或荧光生成试剂与待测物进行标记或衍生,即利用某些试剂与非荧光或弱荧光化合物以共价键或其它形式结合形成发荧光的络合物或聚集体进行测定,其基本特点是具备高度灵敏性和极宽的动态响应时间。太阳能电池太阳能作为可以解决化石燃料枯竭和地球环境问题的绿色能源越来越备受瞩目。利用光伏效应将太阳能转换成电能的太阳能电池是当前合理利用太阳能的重要装置之一。然而,目前所广泛使用的硅基太阳能电池其光电转换效率理论最大值仅30%,实际转换效率约15%。利用掺稀土光功能材料如能实现吸收一个可见光子,而发射两个或多个红外光子,则红外量子剪裁材料有望大力提高硅基太阳能电池光电转换效率。光致发光材料主要特性测量吸收光谱反射光谱发射光谱激发光谱荧光寿命色品坐标发光效率吸收光谱当光照射到发光材料上时,一部分被反射、散射,一部分透射,剩下的被吸收。只有被吸收的这部分光才对发光起作用。但是也不是所有被吸收的光的各个波长都能起激发作用。研究哪些波长被吸收,吸收多少,显然是重要的。吸收系数kλ随波长(或频率)的变化,叫吸收光谱。发光材料的吸收光谱,首先决定于基质,而激活剂和其他杂质也起一定的作用,它们可以产生吸收带或吸收线。多数实用得发光材料都是粉末状,是由微小的晶粒组成的。这对精确测量吸收光谱造成很大的困难。反射光谱反射光谱,是反射率Rλ随波长(或频率)的变化。而所谓反射率,是指反射光的总量(因为既然是粉末,漫反射就很强,这里指的是漫反射)和入射光的总量之比。通过材料的反射光谱来估计由微小的晶粒组成的粉末状发光材料对光的吸收。激发光谱激发光谱是指发光的某一谱线或谱带的强度随激发光波长(或频率)的变化。由此可知,激发光谱反映不同波长的光激发材料的效果。激发光谱的横轴代表所用的激发光波长,纵轴代表发光的强弱,可以用能量或发光强度表示。发射光谱发光材料的发射光谱,指的是发光的能量按波长或频率的分布,许多发光材料的发射光谱是连续的谱带,分布在很广的范围。发光中心的结构决定发射光谱的形成。因此,不同的发光谱带,是来源于不同的发光中心,因此又具有不同的性能。荧光寿命处在发射荧光的高能级的粒子,经过一段时间就会向低能级跃迁而发射荧光,这段时间是随机的,它的平均值称为荧光寿命。它表现为激发停止后,荧光衰减到起始发光强度的1/e所经历的时间。激发停止后;发光强度随时间而降低的现象叫发光的衰减。这时的发光叫余辉。色品坐标实验发现,人眼的视觉响应应取决于红、绿、蓝三分量的代数和,即它们的比例决定了彩色视觉,而其亮度在数量上等于三基色的总和。颜色可由红(R)、绿(G)、蓝(B)三基色相加而得。在颜色方程中﹐因有C=R+G+B﹐将配色方程变形为(C)=R/C(R)+G/C(G)+B/C(B)﹐由此可以看出三原色的刺激值在总颜色的刺激值(R+G+B)中所占的比例﹐取决于三刺激值的相对量。令r=R/(R+G+B)﹑g=G/(R+G+B)﹑b=B/(R+G+B)﹐称为色品坐标(相对三色系数)。发光效率发光效率是发光体把受激发时吸收的能量转换为光能的能力。它是表征发光体功能的重要参量,可有三种表示方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论