2021-2023年全国高考数学典例真题汇编(新高考模式训练)15_第1页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)15_第2页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)15_第3页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)15_第4页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)15_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)15姓名:___________班级:___________一.单选题(本大题共3小题,每小题5分,共15分)1.【2023-天津卷数学真题】已知集合,则()A. B. C. D.2.【2022-全国II卷数学高考真题】()A. B. C. D.3.【2021-全国新高II卷】复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.【2021-新高考Ⅰ卷】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A. B. C. D.5.【2023-天津卷数学真题】若,则的大小关系为()A. B.C. D.6.【2021-北京数学高考真题】和是两个等差数列,其中为常值,,,,则()A. B. C. D.7.【2022-浙江卷数学高考真题】如图,已知正三棱柱,E,F分别是棱上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则()A. B. C. D.8.【2022-全国甲卷数学高考真题】已知,则()A. B. C. D.二.多选题(本大题共1小题,每小题5分,共5分)9.【2021-新高考Ⅰ卷】有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同10.【2021-全国新高II卷】如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是()A. B.C. D.11.【2021-全国新高II卷】设正整数,其中,记.则()A. B.C. D.三.填空题(本大题共1小题,每小题5分,共5分)12.【2023-天津卷数学真题】在的展开式中,项的系数为_________.13.【2021-天津卷】若斜率为的直线与轴交于点,与圆相切于点,则____________.14.【2023-北京数学乙卷高考真题】我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列,该数列的前3项成等差数列,后7项成等比数列,且,则___________;数列所有项的和为____________.四.解答题(本大题共1小题,每小题12分,共12分)15.【2022-天津数学高考真题】在中,角A、B、C的对边分别为a,b,c.已知.(1)求的值;(2)求的值;(3)求的值.16.【2022-天津数学高考真题】直三棱柱中,,D为的中点,E为的中点,F为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面所成二面角的余弦值.17.【2023-新课标全国Ⅰ卷真题】已知函数.(1)讨论的单调性;(2)证明:当时,.18.【2023-全国数学甲卷(文)高考真题】已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.19.【2021-新高考Ⅰ卷】已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:.答案第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)15【参考答案】1.【答案】A【解析】由,而,所以.故选:A2.【答案】D【解析】,故选:D.3.【答案】A【解析】,所以该复数对应的点为,该点在第一象限,故选:A4.【答案】B【解析】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.5.【答案】D【解析】由在R上递增,则,由在上递增,则.所以.故选:D6.【答案】B【解析】由已知条件可得,则,因此,.故选:B.

7.【答案】A【解析】如图所示,过点作于,过作于,连接,则,,,,,,所以,故选:A.8.【答案】A【解析】因为,因为当所以,即,所以;设,,所以在单调递增,则,所以,所以,所以,故选:A9.【答案】CD【解析】A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD10.【答案】BC【解析】设正方体的棱长为,对于A,如图(1)所示,连接,则,故(或其补角)为异面直线所成的角,直角三角形,,,故,故不成立,故A错误.对于B,如图(2)所示,取的中点为,连接,,则,,由正方体可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正确.对于C,如图(3),连接,则,由B的判断可得,故,故C正确.对于D,如图(4),取的中点,的中点,连接,则,因为,故,故,所以或其补角为异面直线所成的角,因为正方体的棱长为2,故,,,,故不是直角,故不垂直,故D错误.故选:BC.11.【答案】ACD【解析】对于A选项,,,所以,,A选项正确;对于B选项,取,,,而,则,即,B选项错误;对于C选项,,所以,,,所以,,因此,,C选项正确;对于D选项,,故,D选项正确.故选:ACD.12.【答案】【解析】展开式的通项公式,令可得,,则项的系数为.故答案为:60.13.【答案】【解析】设直线的方程为,则点,由于直线与圆相切,且圆心为,半径为,则,解得或,所以,因为,故.故答案为:.14.【答案】①.48②.384【解析】方法一:设前3项的公差为,后7项公比为,则,且,可得,则,即,可得,空1:可得,空2:方法二:空1:因为为等比数列,则,且,所以;又因为,则;空2:设后7项公比为,则,解得,可得,所以.故答案为:48;384.15.【答案】(1)(2)(3)【解析】(2)由(1)可求出,再根据正弦定理即可解出;(3)先根据二倍角公式求出,再根据两角差的正弦公式即可求出.【小问1详解】因为,即,而,代入得,解得:.【小问2详解】由(1)可求出,而,所以,又,所以.【小问3详解】因为,所以,故,又,所以,,而,所以,故.16.【答案】(1)证明见解析(2)(3)【解析】(2)利用空间向量法可求得直线与平面夹角的正弦值;(3)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:在直三棱柱中,平面,且,则以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、、、、,则,易知平面的一个法向量为,则,故,平面,故平面.【小问2详解】解:,,,设平面的法向量为,则,取,可得,.因此,直线与平面夹角的正弦值为.【小问3详解】解:,,设平面的法向量为,则,取,可得,则,因此,平面与平面夹角的余弦值为.17.【答案】(1)答案见解析(2)证明见解析【解析】(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.【小问1详解】因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.【小问2详解】方法一:由(1)得,,要证,即证,即证恒成立,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.18.【答案】(1)在上单调递减(2)【解析】(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【小问1详解】因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.【小问2详解】法一:构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.19.【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【解析】(2)设,原不等式等价于,前者可构建新函数,利用极值点偏移可证,后者可设,从而把转化为在上的恒成立问题,利用导数可证明该结论成立.(1)函数的定义域为,又,当时,,当时,,故的递增区间为,递减区间为.(2)因为,故,即,故,设,由(1)可知不妨设.因为时,,时,,故.先证:,若,必成立.若,要证:,即证,而,故即证,即证:,其中.设,则,因为,故,故,所以,故在为增函数,所以,故,即成立,所以成立,综上,成立.设,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论