版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数据仓库系统的设计及开发2024/3/24数据仓库系统的设计及开发2.3.数据仓库设计—数据建模最佳实践—构建高性能的数据仓库数据仓库设计—ETL设计数据仓库设计—建模过程日程安排数据仓库设计—界面设计数据仓库的开发应用过程2024/3/24数据仓库系统的设计及开发3.灵活性能够很好的分离出底层技术的实现和上层业务的展现当上层业务发生变化时,通过数据模型,底层技术实现可以较为轻松的完成业务的变动,从而达到整个数据仓库系统的灵活性1.业务核理改善业务流程能够全面了解业务系统的业务架构图和整个业务运行情况2)能够将业务按照特定的规律进行分门别类和程序化2.解决信息孤岛及数据差异1)建立全方法的数据视角;2)
保证整个企业的数据的一致性;3)
消除各个部门之间的信息孤岛;4.加快数据仓库系统的建设开发人员和业务人员能够很容易达成系统建设范围的边界的界定能够使整个项目组明确当前的任务,加快整个系统建设的速度为什么需要数据模型2024/3/24数据仓库系统的设计及开发数据仓库建模人员所需的技能和能力分析能力见树又见林模拟论证学习能力抽象综合交流能力组交互演示调查访谈原型设计能力企业体系架构2024/3/24数据仓库系统的设计及开发数据仓库设计建模的要点和原则建模原则选择创建什么模型对如何动手解决问题和如何解决方案有深远影响每一种模型可以在不同的精度级别上表示最好的模型是与现实相联系单个模型不充分,需要一组模型去处理建模的要点正确认识建模方法论2024/3/24数据仓库系统的设计及开发利用图形来建立数据模型图形具有直观性、简单性以及可理解性等优点图形能自然地表达客观世界理解图中路径探索2024/3/24数据仓库系统的设计及开发什么是数据模型业务建模,生成业务模型,主要解决业务层面的分解和程序化。领域建模,生成概念模型,主要是对业务模型进行抽象处理,生成领域概念模型。逻辑建模,生成逻辑模型,主要是将领域模型的概念实体以及实体之间的关系进行数据库层次的逻辑化。物理建模,生成物理模型,主要解决,逻辑模型针对不同关系型数据库的物理化以及性能等一些具体的技术问题。2024/3/24数据仓库系统的设计及开发思考需求建模与业务建模需求建模与业务建模谁先谁后?软件开发过程是否应该是:业务调研,业务建模(业务分析),(业务模型分析)需求调研(这时,已经有一部分需求可从业务模型中获得),需求建模,需求分析……2024/3/24数据仓库系统的设计及开发业务建模—组织结构分析2024/3/24数据仓库系统的设计及开发组织结构,用户及权限的分析客户组织结构的分析公司组织机构区域位置集团/省/地市用户的分析用户组角色权限的分析功能权限分析数据权限分析2024/3/24数据仓库系统的设计及开发例:三大运营商的组织架构调整2024/3/24数据仓库系统的设计及开发业务建模—业务流程分析2024/3/24数据仓库系统的设计及开发什么是业务流程2024/3/24数据仓库系统的设计及开发业务流程分析的内容(1)原有流程的分析。(2)业务流程的优化。(3)确定新的业务流程(4)新系统的人机界面。2024/3/24数据仓库系统的设计及开发业务流程分析的步骤1.系统环境调查2.组织机构和职责的调查3.功能体系的调查与分析4.管理业务流程的调查与分析
2024/3/24数据仓库系统的设计及开发案例学习:
新业务客户服务业务流程—新业务查询流程2024/3/24数据仓库系统的设计及开发业务流程可以代替业务建模吗在业务流程的背后,有一个更加根本的因素——商业需求。商业需求才是真正的业务模型,业务流程只是一种实现手段而已。例:新用户入网业务流程:1:首先把SIM卡和号码在交换网络上做对应关系的注册;2:市场部把SIM卡存入一定的金额,发给销售商,收取销售商的货款;3:销售商把卡卖给用户,用户填写入网合同,SIM装入手机可以立即通话;4:销售商把入网合同交给市场部,市场部资料录入人员将用户的资料录入系统;5:计费系统按照用户选择的资费对话单进行计费;6、市场部按照用户的消费情况给销售商计算佣金和返利。思考:真正的业务模型(需求)是什么?2024/3/24数据仓库系统的设计及开发从业务流程中提取概念和逻辑模型心得体会:看到背后的商业需求,你会发现模型原来非常稳定不需要急于知道所有的细节性的需求,只要了解比较重要的20%的需求2024/3/24数据仓库系统的设计及开发数据仓库数据模型-星型模型与雪花模型2024/3/24数据仓库系统的设计及开发数据仓库建模的原则兼顾效率与数据粒度的需要1支持需求的变化2避免对业务运营系统造成影响3满足不同用户的需要4考虑末来的可扩展性52024/3/24数据仓库系统的设计及开发数据仓库建模的三个阶段概念模型设计(ConceptDataModeling):这一阶段之前的首要工作是通过需求分析,明确需求所涵盖的业务范围。然后再对需求范围内的业务及其间关系进行高度概括性的描述,把密切相关业务对象进行归类,即划分主题域。概念模型的设计是为逻辑模型的设计做准备,它没有统一的标准,主要根据设计者的经验。逻辑模型设计(LogicalDataModeling):分别对概念模型的各个主题域进行细化,根据业务定义、分类和规则,定义其中的实体并描述实体之间的关系,并产生实体关系图(ERD),然后遵照规范化思想在实体关系的基础上明确各个实体的属性。实体产生于中国移动开展的业务、服务及其涉及的对象(如客户、帐户、员工、机构、资源),实体间的对应、约束关系则来自于各业务过程中的规则。可以说,这一阶段面对的是业务。
物理模型设计(PhysicalDataModeling):物理模型设计主要依据逻辑模型针对具体的分析需求和物理平台采取相应的优化策略。此时会在一定程度上增加数据冗余或者隐藏实体之间的关系或者进行实体的合并和拆分,目的是提高数据分析的速度,适应具体数据库的容量、性能等限制。可以说,这一阶段面对的是具体软硬件平台和性能要求。一旦逻辑模型到位,物理模型就有了可参照的依据,开发工作内容也同时得到明确。物理模型设计一般在架构设计阶段2024/3/24数据仓库系统的设计及开发数据仓库系统所采用的建模流程概念模型为逻辑模型的设计作准备,没有统一标准,主要根据设计者经验逻辑模型对概念模型的各个主题域进行细化,根据业务定义、分类和规则,定义其中的实体并描述实体之间的关系,并产生实体关系图(ERD)一旦逻辑模型到位,物理模型就有了可参照的依据,开发工作内容也同时得到明确2024/3/24数据仓库系统的设计及开发数据仓库概念模型
主题域的设计DW主题的划分必须是基于需求的主题划分,而不仅仅是基于已有查询和报表数据的主题划分DW主题是通过对业务人员的访谈,充分了解业务流程和信息使用需求为主要根源的DW主题的设计必须能够满足业务人员的内在的分析需求DW主题设计的过程中,业务环节点分析是关键DW细化分析主题,解决指标的歧义问题,为模型设计、数据提取、数据展现等多个方面奠定基础2024/3/24数据仓库系统的设计及开发数据仓库的数据模型系统记录域(SystemofRecord):这部分是主要的数据仓库业务数据存储区,数据模型在这里保证了数据的一致性。内部管理域(Housekeeping):这部分主要存储数据仓库用于内部管理的元数据,数据模型在这里能够帮助进行统一的元数据的管理。汇总域(SummaryofArea):这部分数据来自于系统记录域的汇总,数据模型在这里保证了分析域的主题分析的性能,满足了部分的报表查询。分析域(AnalysisArea):这部分数据模型主要用于各个业务部分的具体的主题业务分析。这部分数据模型可以单独存储在相应的数据集市中。反馈域(FeedbackArea):可选项,这部分数据模型主要用于相应前端的反馈数据,数据仓库可以视业务的需要设置这一区域。2024/3/24数据仓库系统的设计及开发数据模型的技术功能结构划分
分段存储区(StagingArea)是为了保证数据移动的顺利进行而开设的阶段性数据存储空间,它是业务系统原始数据进入数据仓库前的缓存区。基础数据仓库根据业务需求的不同,基础数据仓库的组织形式以三范式模型为主,在有的系统中也可能采用星型或雪花模型。数据集市(DataMart)数据集市中的数据通常由基础数据仓库的详细数据聚合而来,根据数据聚合程度的不同包含轻度聚合、中度聚合和高度聚合三种不同的层次。汇总的方式将依据数据量的大小和使用频度综合考虑2024/3/24数据仓库系统的设计及开发数据仓库的模型—关系模型2024/3/24数据仓库系统的设计及开发数据仓库的模型—星型模型通过数据预连接和建立有选择的数据冗余,设计者为访问和分析过程大大简化了数据。星型连接应用于设计数据仓库中很大的实体,而数据模型则应用于数据仓库中较小的实体。2024/3/24数据仓库系统的设计及开发数据仓库的模型—雪花模型许多维度存在着比较复杂的结构,它们有的还具有多层的层次结构。因此,很难将这样的维表只采用一个关系表的形式表达出来,必须将这些维表规范成有多个外键关联的关系表2024/3/24数据仓库系统的设计及开发星型模型VS雪花模型比较项目优点缺点星型模式1.查询效率高,事实表作连接时其速度较快;2.便于用户理解。比较直观,通过分析星形模式,很容易组合出各种查询增加了存储空间雪花模式1.在一定程度上减少了存储空间2.规范化的结构更容易更新和维护1.比较复杂,用户不容易理解;2.浏览内容相对困难3.额外的连接将使查询性能下降2024/3/24数据仓库系统的设计及开发宽表横表与纵表处理方便性与业务支撑灵活性的差异宽表在横表的基础上拓展,强化处理方便性开放给业务人员使用,直接解决业务问题单条记录包括用户基本信息、产品选择和使用量、费用信息2024/3/24数据仓库系统的设计及开发数据仓库建模方法—范式建模法优点:从关系型数据库的角度出发,结合了业务系统的数据模型,能够比较方便的实现数据仓库的建模缺点:在某些时候反而限制了整个数据仓库模型的灵活性,性能等2024/3/24数据仓库系统的设计及开发数据仓库建模方法—维度建模法优点:维度建模非常直观,紧紧围绕着业务模型,可以直观的反映出业务模型中的业务问题缺点:如果只是依靠单纯的维度建模,不能保证数据来源的一致性和准确性2024/3/24数据仓库系统的设计及开发数据仓库建模方法—实体建模法优点:能够很轻松的实现业务模型的划分,因此,在业务建模阶段和领域概念建模阶段,实体建模法有着广泛的应用缺点:不太适用于物理建模2024/3/24数据仓库系统的设计及开发数据仓库建模的十大戒律1)
必须回答紧迫的问题;2)
必须有正确的事实表;3)
将有正确的维表,描述必须按最终用户的业务术语表达;4)
必须理解数据仓库所影响的公司过程或影响数据仓库的公司过程;5)
对于事实表,应该有正确的“粒度”;6)
根据需要存储正确长度的公司历史数据;7)
以一种对于公司有意义的方式来集成所有必要的数据;8)
创建必要的总结表;9)
创建必要的索引;10)
能够加载数据仓库数据库并使它以一种适宜的方式可用。2024/3/24数据仓库系统的设计及开发数据仓库缓慢变化维的一个案例一个案例在一个零售业数据仓库中,事实表保存着各销售人员的销售记录,某天一个销售人员从北京分公司调到上海分公司了,那么如何来保存这个变化呢?也就是说销售人员维度要怎么恰当的处理这一变化。如果我们要统计北京地区或上海地区的总销售情况的时候,这个销售人员的销售记录应该算在北京还是算在上海?当然是调离前的算在北京,调离后的算在上海,但是如标记这个销售人员所属区域?这里就需要处理一下这个维度的数据,即我们缓慢变化维需要做的事情。
2024/3/24数据仓库系统的设计及开发数据仓库缓慢变化维的解决方案新数据覆盖旧数据保存多条记录,并添加字段加以区分.添加记录的生效日期和失效日期来标识新旧数据
不同字段保存不同值
,这种方法用不同的字段保存变化痕迹.但是这种方法不能象第二种方法一样保存所有变化记录,它只能保存两次变化记录.适用于变化不超过两次的维度。另外建表保存历史记录,而维度只保存当前数据
混合模式2024/3/24数据仓库系统的设计及开发数据仓库建模_案例2024/3/24数据仓库系统的设计及开发案例:怎样构建数据仓库模型确定主题域确定主题域及各主题域之间的关系确定主题域的业务数据确定业务数据中的业务实体确定业务实体之间的关系确定物理模型2024/3/24数据仓库系统的设计及开发确定主题域及各主题域之间的关系服务通过网络实现/网络支持服务网络产生事件/事件包括网络类产品被销售给客户/参与人使用和管理产品跟踪应付&应收/提供成本&收入历史事件包含财务类参与人产生和经历事件/事件包括参与人的产品/服务产生事件事件包括产品类营销产生事件事件实现营销营销被锁定位置/位置定位营销针对特定产品/产品通过营销推向市场为参与人建立帐户、帐单/记录帐户、成本和付款服务使用的帐务信息/帐务记录产品的成本和付款定位网络/网络支持的位置营销的目标针对参与人/参与人是营销的受众包括消费者和运营商在内/位置定位FinanceManagement(财务管理)BILLING(帐务)NETWORK(网络资源)PRODUCT(产品)MARKETING(市场营销)LOCATION(地域)PARTY(参与人)EVENT(事件)跟踪总帐/负责2024/3/24数据仓库系统的设计及开发基本结构特征奖励隐私参与人主题描述了和电信运营商有着业务联系的任何个人、企业、组织、团体等。
确定主题域的业务数据2024/3/24数据仓库系统的设计及开发参与人间关联
参与人角色组织层次结构层次结构级别层次结构类型商业组织内部组织标准分类代码确定基本结构业务数据的业务实体及关系参与人:和电信运营商有着业务联系的任何个人、组织机构、家庭和虚拟客户。例:财务市场营销网管例:客户潜在客户电信运营商代理商供应商管理者雇主职工个人家庭组织参与人2024/3/24数据仓库系统的设计及开发特征符合程度特征类别值客户特征帐户特征特征类别例:个人喜好信用类信息家庭类信息教育类信息职业类信息机构类信息
例:信用等级职业状态收入子女数教育程度特征分组完全符合部分符合不符合确定特征业务数据中的业务实体及关系2024/3/24数据仓库系统的设计及开发奖励计划管理参与人角色奖励目标客户群目标群奖励等级奖励类型参与人奖励历史记录奖励计划奖励计划:记录电信运营商向客户提供奖励和回报的历史。确定奖励业务数据中的业务实体及关系2024/3/24数据仓库系统的设计及开发隐私信息类别同意周期组织隐私策略信息参与人帐户隐私信息帐户同意等级信息参与人同意等级信息参与人隐私信息隐私信息类别确定隐私业务数据中的业务实体及关系2024/3/24数据仓库系统的设计及开发业务系统与数据仓库模型的映射2024/3/24数据仓库系统的设计及开发数据仓库建模_案例实践2024/3/24数据仓库系统的设计及开发国内社保行业背景目前我们国家的社保主要分为养老,失业,工伤,生育,医疗保险和劳动力市场这6大块主要业务领域。在这6大业务领域中,目前的状况养老和事业的系统已经基本完善,已经有一部分数据开始联网检测。对于工伤,生育,医疗和劳动力市场这一块业务,有些地方发展的比较成熟,而有些地方还不够成熟。请大家思考并简单描述社保行业的数据仓库模型:大致的业务模型大致的概念模型2024/3/24数据仓库系统的设计及开发社保行业数据仓库业务模型2024/3/24数据仓库系统的设计及开发社保行业数据仓库领域概念模型2024/3/24数据仓库系统的设计及开发社保行业数据仓库逻辑模型通过领域概念模型细化逻辑模型每一个抽象的实体,例如:“人”的属性包括年龄,性别,受教育程度等等。各个抽象实体间的联系。例如:对于养老金征缴这个“事件”的属性得考虑,对于失业劳动者培训这个“事件”的属性得考虑等等。找出抽象事件的关系,并对其进行说明。例如:对于“事件”中的地域,事件等因素的考量等等。建议:可以参考3NF的建模方法,表达出实体的属性,以及实体与实体之间的联系。例如:在这个阶段,我们可以通过采用ERWIN等建模工具等作出符合3NF的关系型数据模型来。
2024/3/24数据仓库系统的设计及开发社保行业数据仓库物理模型完成物理模型生成创建表的脚本。不同的数据仓库平台可能生成不同的脚本。针对数据集市的需要,按照维度建模的方法,生成一些事实表,维表等工作。针对数据仓库的
ETL
车和元数据管理的需要,生成一些数据仓库维护的表,例如:日志表等。注:根据业务实际的需要和自己对抽象能力的把握来创建适合自己的数据模型
2024/3/24数据仓库系统的设计及开发总结:
数据仓库建模需注意的几个问题数据粒度和数据组织维和度量的唯一性和公用性数据粒度一旦变粗,就要考虑多个主题的融合汇总不论如何归并,需要保持数据之间的联系对ODS中的各个主题的事实数据进行时间上的汇总把包含细节过多的交易记录进行拆分汇总、再汇总2024/3/24数据仓库系统的设计及开发2.3.数据仓库数据模型—星形与雪花最佳实践—构建高性能的数据仓库数据仓库设计—ETL设计数据仓库设计—建模过程日程安排数据仓库设计—界面设计数据仓库的开发应用过程2024/3/24数据仓库系统的设计及开发ETL数据转换过程的功能模块设计ETL数据转换操作大致可以分为6个组或模块:数据的提取、验证、清理、集成、聚集和装入。2024/3/24数据仓库系统的设计及开发ETL的设计要点(1)ETL的设计一定是针对具体的应用相关的,针对不同的业务和分析模型有不同的抽取要求在设计过程中需要考虑是否需要预留字段,增加属性等等数据的粒度,在同一CUBE中必须统一数据周期的确定,在设计ETL时需要事先确定抽取的时间抽取的方式尽量采用增量的抽取以减小每次抽取的数量数据流和工作流的考虑2024/3/24数据仓库系统的设计及开发ETL的设计要点(2)流程的异常处理ETL的调整,运行管理以及监控针对业务的需求进行ETL的配置和设置界面ETL对CUBE的管理ETL装载数据初始化的过程程序具有自修复功能2024/3/24数据仓库系统的设计及开发确定ETL的抽取及加载策略抽取策略每日增量每日全量每月增量每月全量抽取策略全表覆盖历史加载直接追加主表加载初始加载其它加载2024/3/24数据仓库系统的设计及开发ETLMapping实体映射表2024/3/24数据仓库系统的设计及开发确定ETL接口需求系统和任何其他外部系统或组件进行交互相关需求接口一般由系统间的传输方式、传输协议、传输过程、接口处理模式、抽取周期、编码原则、命名规则、验证方式和数据单元等组成2024/3/24数据仓库系统的设计及开发确定ETL接口的实现方式2024/3/24数据仓库系统的设计及开发确定ETL接口的数据要求及保障2024/3/24数据仓库系统的设计及开发确定ETL接口文件的格式2024/3/24数据仓库系统的设计及开发确定ETL接口文件的内容2024/3/24数据仓库系统的设计及开发确定ETL接口单元2024/3/24数据仓库系统的设计及开发ETL接口数据处理流程2024/3/24数据仓库系统的设计及开发ETL接口出错处理接口处理重传机制1、经营分析系统方校验数据源内容后把出错记录放入“出错记录文件存放目录”2、数据源厂商定时查阅此目录,分析错误原因,并采取纠正措施例如:重新传送此数据项文件。具体的实现方式需双方协定。大数据文件分拆机制只要是增量抽取的,原则上不考虑分拆,对于GSM清单和普通短信清单,数据量很大,考虑分拆成12个数据文件,每2小时一个。2024/3/24数据仓库系统的设计及开发案例学习2024/3/24数据仓库系统的设计及开发2.3.数据仓库数据模型—星形与雪花BI项目设计开发的最佳实践数据仓库设计—ETL设计数据仓库设计—建模过程日程安排数据仓库设计—界面设计数据仓库的开发应用过程2024/3/24数据仓库系统的设计及开发确定界面元素界面主颜色字体颜色及大小界面布局界面交互方式界面功能分布界面输入输出模式2024/3/24数据仓库系统的设计及开发某运营商KPI系统目标以最方便的形式让各级领导对考核指标完成情况进行浏览分析采用良好方式实现常用指标的关联展示,更加符合业务人员的分析逻辑采用树型菜单对个体分散指标进行分类展示组织,提高指标分析的操作的便捷性详细编写各业务指标的统计口径,让用户可以方便查询和检索2024/3/24数据仓库系统的设计及开发KPI系统指标体系2024/3/24数据仓库系统的设计及开发数据准确性刷新/上载数据的频率(定期)数据下钻能力访问控制KPI系统关键性:低高KPI分层KPI系统主要功能2024/3/24数据仓库系统的设计及开发1。支持角色,有预定义好的权限视图2。分层管理:每个KPI有对应的“保障”KPI的层次定义3。动态交互式环境用户可以设置KPI分解的百分比支持分解维度(按部门、运营中心如地市等)可调整的KPI分解规则4。阀值预警5。内部标杆共享KPI系统框架和关键功能2024/3/24数据仓库系统的设计及开发整体KPI首页界面分为三个目录级★KPI考核指标★KPI通报指标★KPI个体指标体现以表格的形式展现数据,辅助以图型增加指标之间的关联性,从多角度体现指标的内容。增加指标说明的模块,对用户使用该指标时容易产生理解误差的内容提供相应解释。KPI系统首页界面2024/3/24数据仓库系统的设计及开发树状的目录力求简单,清晰,操作方便,减少用户的点击切换环节过程。KPI系统树状目录结构2024/3/24数据仓库系统的设计及开发简单明了的KPI指标往往成为管理者和普通市场人员最关注的对象领导的聊望台滚动指标告警指标列表区首页或结果展示区滚动指标告警区KPI系统首页界面2024/3/24数据仓库系统的设计及开发增强指标之间的关联性,对若干指标的内在联系,进行归类对比展示,以多种图形方式进行多角度地展现。KPI系统界面12024/3/24数据仓库系统的设计及开发KPI指标主要展现此项指标在时间上的对比,例如,上月当日,历史同期,环比等。KPI指标按业务分析逻辑有机排列,方便业务人员对比观看。KPI在表格上增加趋势的展现,分为三种,“平稳”,“升高”,“降低”点击以后将展示最近一周的趋势KPI系统界面22024/3/24数据仓库系统的设计及开发2.数据仓库数据模型—星形与雪花BI项目设计开发的最佳实践数据仓库设计—ETL设计数据仓库设计—建模过程日程安排数据仓库的开发应用过程数据仓库设计—界面设计2024/3/24数据仓库系统的设计及开发自顶向下(Top-downApproach)建造企业数据仓库建设中心数据模型一次性的完成数据的重构工作最小化数据冗余度和不一致性存储详细的历史数据从企业数据仓库中建造数据集市得到大部分的集成数据直接依赖于数据仓库的可用性对信心的极大考验:投资大,建设时间长,阶段成果显现困难!ExternalDataODSCentralDataWarehouseDataMartDataMart2024/3/24数据仓库系统的设计及开发自底而上(Bottom-upApproach)创建部门的数据集市范围局限于一个主题区域快速的ROI--局部的商业需求得到满足本部门自治--设计上具有灵活性对其他部门数据集市是一个好的指导容易复制到其他部门扩大到企业数据仓库创建EDW作为一个长期的目标重复投资:每个部门都重复进行数据整理!企业数据仓库建设困难:数据口径、不一致性问题突出!DataMartDataMartCentralDataWarehouseExternalDataODSpartpartpartpartpartpart2024/3/24数据仓库系统的设计及开发数据仓库工程项目的特点数据仓库工程既包括数据又包括程序,而且是以数据为基础的系统数据仓库工程中的数据仓库的目标是面向主题数据仓库工程是以处理分析型目标为主而不是事物型目标,它对数据内容正确性与形式规范性有严格要求数据仓库工程中数据来源已有多种信息系统,因此对系统的数据要有一定的限制制约,也就是有了建立统一数据平台的需求2024/3/24数据仓库系统的设计及开发数据仓库工程项目的开发应用过程解决方案启动(Solutionstartup)业务发现(Businessdiscovery)解决方案建议(Solutionproposal)解决方案计划(Solutionplanning)仓库概念建模(Warehouseconceptualmodeling)仓库阶段设计(Warehousephasedesign)解决方案实现周期(Solutionimplementationcycle)解决方案部署(Solutiondeployment)
2024/3/24数据仓库系统的设计及开发数据仓库业务发现过程收集记录业务需求理解客户业务环境差异分析,理解客户的业务难题及需求,弥补当前业务状态及其业务需求之间差异2024/3/24数据仓库系统的设计及开发收集记录业务需求确定业务对象确定数据分析场景确定功能需求理解客户的业务环境理解基础架构环境理解数据环境差异分析需求分析识别业务主题领域识别数据差异识别基础设施差异识别资源的差异理解客户环境三个任务可以重叠进行
数据仓库的业务发现内容2024/3/24数据仓库系统的设计及开发2024/3/24数据仓库系统的设计及开发数据仓库工程项目的开发流程图2024/3/24数据仓库系统的设计及开发数据仓库的数据流程(1):对原始数据进行数据抽取、清洗、整理后成为数据仓库中的各种综合度的数据表。(2):经过维度分析得到维表并定义相应的格式表。(3):从数据仓库中抽取数据形成事实表及补充事实表。(4):从数据仓库中抽取信息,整理成数据挖掘宽表,用于数据挖掘。(5):宽表中的数据通过数据挖掘程序处理后生成的扩展数据(挖掘结果)需要重新回写进事实表。(6):利用数据展现工具展现OLAP和数据挖掘的结果。2024/3/24数据仓库系统的设计及开发数据仓库需求分析数据仓库的特点是面向主题,按主题组织数据。1、主题分析
对于在层次结构中的每个主题,需要进行详细的调研,确定要分析的指标,确定用户从哪些角度来分析数据即维度,还要确定用户分析数据的细化或综合程度即粒度。主题、指标、维度、粒度是是建立数据仓库的基本要素。
2、数据分析
(1)数据源分析(2)数据数量分析(3)数据质量分析3、环境要求分析
需要对满足需求的系统平台与环境提出要求,包括设备、网络、数据、接口、软件等的要求。数据源分析主题分析数据质量分析环境要求分析2024/3/24数据仓库系统的设计及开发数据仓库系统总体设计体系结构设计接口设计应用程序模块设计①数据源层②数据后端处理层③数据仓库及其管理层④数据集市层⑤数据仓库应用层⑥数据展示层①数据源与分析模型的接口②分析模型与应用的接口2024/3/24数据仓库系统的设计及开发分析设计实施需求分析风险分析方案设计POC实施UAT发布环境准备Scope系统功能目标分析系统性能环境所带来的风险分析可以容忍的见险关键流程的定义确定组织架构方案设计(技术/框架/流程)数据备份方案时间窗环境(DB/TOOL/DATA)源代码/POC数据POC报告CUT计划测试/用户测试数据备份系统观察系统发布BugFixBI项目建设方法论2024/3/24数据仓库系统的设计及开发
BI项目组织图92*SteeringCommittee(项目经理)(甲方项目经理)ProjectManagerETL&DM(SeniorSE)Report(SeniorSE)TestQAKMSoultionArchitect2024/3/24数据仓库系统的设计及开发BI项目组织说明项目指导委员会(SteeringCommittee):项目指导委员会主要由甲方与HP的资深主管们所组成,负责决定项目的策略方向与目的,并提供项目执行所需要的支持与承诺。协助处理与仲裁项目执行过程由项目经理所提报(Escalate)所遇到之困难与争议。协助处理项目执行上所需要之人力资源支持与调动,如项目团队之人员指派等。项目经理(ProjectManager):在项目经理的协助下,承担并完成下列工作:规划详细的项目计划书管理项目中所有的日常事务与工作事项,以期达成项目每的阶段性任务及目标核审项目进度与项目里程碑定期与甲方项目经理共同执行项目的审核并商讨项目的计划定期以书面方式向项目指导委员会报告项目进行的状况针对项目执行上所遭遇的例外事件进行处理,并适当提报给项目指导委员会以寻求支持与协助与甲方项目经理共同担负起项目建置成功的责任93*2024/3/24数据仓库系统的设计及开发BI项目组织说明专案架构师(SolutionArchitect):负责项目相关之技术架构与功能设计等,并领导项目执行技术团队确认项目技术架构符合甲方之维运要求与质量标准。ETL组2人:负责ETL部分的开发与实施Report组2人:负责BOReport部分的开发与实施Test组2人:负责项目的系统测试与用户最终测试其中测试组有1人兼任QA和KM角色。94*2024/3/24数据仓库系统的设计及开发M0M1M2M3M4M5BI项目里程碑Milestone项目启动需求阶段POC项目实施集成测试ReleaseUATM0.5M1.5M2.5M3.5M4.5RollOut注:在大约项目启动后2个月,POC阶段将完成,也即最初的原型构建,用户可以得到一个阶段性的Release,下一步的项目实施及集成测试将以迭代的方式实现。2024/3/24数据仓库系统的设计及开发BI项目实施阶段阶段输入输出项目启动-评估SOW/方案建议书/迁移评估问题清单评估计划,迁移方案,原始系统检查报告项目启动-项目计划项目实施方案,当前环境和业务需求,数据和属性,适用的实施工具项目计划,质量计划,风险管理计划,配置管理计划,单元测试案例(持续更新),集成测试案例(持续更新)POC源代码,POC数据,原始系统检查报告,实施方案实施模块,POC测试结果,POC经验总结,实施方案(更新),模块实施步骤报告迁移源代码,POC数据,原始系统检查报告,迁移方案实施的ETL脚本,数据模型,数据代码,迁移测试脚本,模块实施步骤报告集成测试测试计划,测试案例,基准版本,质量计划已测试应用,测试报告,测试案例(更新)发布已实施应用ReleaseNote用户验收测试(UAT)验收测试计划验收测试报告RollOut已迁移应用部署计划,培训材料2024/3/24数据仓库系统的设计及开发优化及案例分析-业务环境数据库服务器:Windows2000Server+Oracle8i+IIS+PowerPlay
EnterpriseServer
应用服务器:Windows2000Server+Transformer
客户端:IE5.0以上版本。2024/3/24数据仓库系统的设计及开发优化及案例分析-优化内容1.RAID
2.索引的建立3.SQL优化4.直接装载、分区选择、网络设置2024/3/24数据仓库系统的设计及开发2.数据仓库数据模型—星形与雪花BI项目设计开发的最佳实践数据仓库设计—ETL设计数据仓库设计—建模过程日程安排数据仓库的开发应用过程数据仓库设计—界面设计2024/3/24数据仓库系统的设计及开发影响仓库性能的关键因素系统硬件磁盘(转速、容量)IO速度(光纤卡、网卡、路由器)CPU(个数、主频)主机个数数据模型逻辑模型物理模型应用复杂度及业务发展EDWDataWarehousing2024/3/24数据仓库系统的设计及开发物理模型对性能的影响数据仓库的创建(Build)
初始化每天数据载入每月数据载入数据维护应用查询,统计的支持(Query)KPI固定报表OLAP数据挖掘专题分析即席查询经营分析报告/策划查询性能更应该被优先保证!空间换取时间的优化思想依然适用!2024/3/24数据仓库系统的设计及开发非规范化优化技术增加冗余列(预连接)避免查询时进行表连接操作举例:姓名、联系方式、预存款、当前积分增加派生列(预计算)避免查询时连接和使用聚合函数累计积分、ARPU、MOU、前3月平均话费、量收比重新组表(应用导向)经常使用的查询内容以表的形式存放(物化视图)分割(水平+垂直)用户常用属性与不常用属性当前资料与历史资料非规范化技术建立在查询统计分析的基础上的适合对记录数非常多的表进行需要维护数据的完整性,加大了建设、维护的复杂度非规范化是一项高级设计技巧!OLTP系统也有,但OLAP需要更多,而且是核心!2024/3/24数据仓库系统的设计及开发分表优化技术利用数据仓库的Partition功能数据仓库引擎提供,发挥都处理器及多主机执行的并行性很方便使用,而且必须使用表大到一定程度后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宁夏中医医院暨中医研究院自主招考聘用急需紧缺备案制工作人员高频重点提升(共500题)附带答案详解
- 天津武清区2025年事业单位招聘教师拟聘高频重点提升(共500题)附带答案详解
- 国网黑龙江省电力限公司2025年高校毕业生招聘(第一批)高频重点提升(共500题)附带答案详解
- 国网河南省电力公司2025年高校毕业生招聘(第二批)高频重点提升(共500题)附带答案详解
- 2024版房地产项目开发工程合同
- 国网2025年高校毕业生招聘内蒙古东部电力限公司招聘444人历年高频重点提升(共500题)附带答案详解
- 国家粮食和物资储备局部分直属事业单位招考聘用24人高频重点提升(共500题)附带答案详解
- 国家体育总局2025年事业单位招考人员(秋季)高频重点提升(共500题)附带答案详解
- 四川眉山青神县2025基层事业单位招聘拟聘高频重点提升(共500题)附带答案详解
- 四川成都邛崃市南宝山镇人民政府招聘社区专职工作者2人高频重点提升(共500题)附带答案详解
- 北京市朝阳区2024-2025学年高一(上)期末化学试卷(含答案)
- 2025贵州建筑安全员B证考试题库附答案
- 2024年杭州师范大学附属医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024-2025学年八年级历史上册期末复习课件
- 2025年云南省大理州事业单位招聘339人历年高频重点提升(共500题)附带答案详解
- 《铁路旅客运输规程》考试复习题及答案
- 2024初中数学竞赛真题训练(学生版+解析版)(共6个)
- 规培结业 临床基本技能操作考核评分表
- 2024-2025学年度第一学期三年级数学寒假作业 有答案
- 大型起重机械现场管理手册
- 2023年考研(英语一)真题与答案解析
评论
0/150
提交评论