版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几何概型
教材所处的地位、作用〔1〕从内容上:“几何概型”是安排在“古典概型”之后的第二个概率模型,它是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸.它前面承接了古典概型,后面延续了概率应用,在概率论中起承上启下的重要作用.〔2〕在高考当中:概率问题经常和统计问题联系在一起,作为一道大题出现,而且这道大题是学生能够拿分或者说拿总分值的题,因此应该引起我们的高度重视。
知识与能力目标
:
通过具体实例正确理解几何概型定义及与古典概型的区别;掌握几何概型的概率计算公式并能解决简单实际问题。过程与方法目标:通过几何概型的概念和公式的探究过程,培养学生分析、归纳等数学思维能力,感知用图形解决概率问题的方法.情感态度与价值观目标:通过对几何概型的教学,增加学生合作交流的时机,帮助学生树立科学的世界观和辩证的思想,在体会几何概型意义的同时,感受与他人合作的重要性。依据:根据新课程标准和考试说明并结合学生已有的认知结构和心理特征
教学目标教学重点和难点
教学重点:掌握几何概型的判断及几何概型中概率的计算公式.教学难点:几何概型应用中几何度量确实定及运算依据:新课程标准的要求和考试说明以及高中学生已有的认知结构和心理特征〔1〕知识方面:学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,很容易把本节内容与古典概型的特点、计算方法等进行类比,这是知识的生长点,应因势利导。〔2〕能力方面:初步具备运用所学知识解决问题的能力,但归纳推理与逻辑思维能力还需进一步地培养和加强.如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导。〔3〕情感方面:大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,多数学生有积极的学习态度,能主动参与探究.少数学生的学习主动性,还需要通过营造一定的学习气氛来加以带动.学情分析教法:基于本节课特点,同时考虑到学生的实际情况,本节课我采用启发式、讨论式及讲练结合的教学方法,通过问题激发学生的求知欲,使学生主动参与教学实践活动,并通过多媒体与实物模型辅助教学,帮助学生分析并解决问题.充分表达学生是主体,教师效劳于学生的思路。学法:在引导学生分析问题时,主要采用小组合作探究学习,给学生留出思考的余地,让学生去联想、探索,鼓励学生大胆质疑,围绕几何度量这个中心从多角度各抒己见,把需要解决的问题弄清楚.教法与学法分析:
三、教学过程〔一〕复习回忆,承上启下。〔2分〕〔二〕创设情境,引入新课。〔6分〕〔三〕归纳探索,形成概念。〔6分〕〔四〕例题分析,学以致用。〔12分〕〔五〕稳固练习,熟练掌握。〔12分〕〔五〕反思小结,提高认识。〔5分〕〔六〕分层作业,全面提高。〔2分〕
1.古典概型特点。2.古典概型的计算公式。设计意图:1.加强对古典概型的记忆。2.为本节课类比教学做铺垫。处理方式:教师提问,学生齐答。复习回顾,承上启下
创设情境,引入新课图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否那么乙获胜.在两种情况下分别求甲获胜的概率是多少?转盘游戏:(1)(2)问题1:指针指向的每个方向都是等可能性的吗?问题2:指针指向的方向是有限的吗?设计意图:让学生意识到这种概率模型是与古典概型不同的另外一种
问题3:甲获胜的概率是多少?如何求解?处理方式:小组讨论,学生代表发言,教师引导。设计意图:使学生体会到这种新的概率模型的求解与某个区域的几何度量有关。法一(利用B区域所占的面积)法二(利用B区域所占的弧长)
归纳探索,形成概念1.定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称为几何概型.3.公式2.特点(1)试验中所有可能出现的结果〔根本领件〕有无限多个.(2)每个根本领件出现的可能性相等.【抽象概念】
教师提问:你知道古典概型和几何概型的区别与联系吗?设计意图:学生通过思考,对这两种概率模型的认识更深刻。处理方式:小组讨论,代表发言,教师完善并对学生进行表扬鼓励。古典概型几何概型基本事件个数的有限性基本事件发生的等可能性基本事件发生的等可能性基本事件个数的无限性列举法区域的几何度量相同点不同点方法公式
例1某人午觉醒来,发现表停了,他翻开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.问题6:此题中根本领件指什么?构成的区域是什么?问题7:全部结果构成的区域是什么?如何度量?设计意图:让学生围绕几何度量从多角度分析问题。处理方式:小组讨论,教师启发:一题多解。
例题分析,学以致用
法一:〔利用[50,60]时间段所占的面积〕:法二:〔利用利用[50,60]时间段所占的弧长〕:法三:〔利用[50,60]时间段所占的圆心角〕:法四:将时间转化成长60的线段,研究事件A位于[50,60]之间的线段的概率:
练习1.小丽洗完衣服后,准备把一件衣服用衣钩挂在一个长3m的衣架上晒干,求衣钩距衣架两端都不小于1m的概率?练习3.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.练习2.在边长为2的正方形中随机撒一粒豆子,求这粒豆子撒在正方形内切圆中的概率.2设计意图:使学生从区域的长度、面积、体积等方面考虑几何概型处理方式:学生板书,教师点拨解题标准。
巩固练习,熟练掌握
〔六〕课堂小结:请几位同学谈一谈通过本节课的教学,你学到了什么?体验到什么?掌握了什么?设计意图:通过教师提问学生答复的方式,是学生自己总结出本节课的内容处理方式:学生答复,教师完善。教师补充完成小结:1、古典概型与几何概型的联系与区别:2、几何概型的概率公式:3、几何概型问题的概率的求解:(1)选择适当的观察角度,转化为几何概型.(2)把根本领件的全体转化为与之对应区域的长度〔面积、体积〕(3)把随机事件A转化为与之对应区域的长度〔面积、体积〕(4)利用几何概率公式计算
反思小结,提高认识
分层作业,全面提高一.必做:课本P142:A组第1、2、3题二.选做:例:两人相约于7时到8时在公园见面,先到者等候20分钟就可离去(假定他们在7:00-8:00内的任意时刻到达公园的时机是等可能的),求两人能够见面的概率。206020
60
o
x
y
x
–
y=–20
x
–
y=20设计意图:通过分层作业,提高同学们的求知欲,和满足不同层次的学生需求。
§3.3.1几何概型1、
几何概型定义2、
几何概型的特点3、
几何概型概率计算公式
例题的解答过程及学生板演小结
作业板书设计
教学评价与保障措施针对本节课的教学目的和设计理念,我采用教师启发引导,学生自主探索、合作交流和多媒体演示等教学手段,突破学生思维的障碍
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州商贸旅游职业学院《单片机应用课程设计》2023-2024学年第一学期期末试卷
- 小学2024年艺术教育发展年度报告
- 浙江电力职业技术学院《纤维化学与物理学》2023-2024学年第一学期期末试卷
- 长春大学《卫生财务管理》2023-2024学年第一学期期末试卷
- 生产调度中的敏捷性管理策略
- 餐饮新员工安全训练模板
- AI企业技术路演模板
- 水的化学属性模板
- 生物制药业策略讲解模板
- 亲子活动相册制作模板
- 资金审批权限管理规定
- 《工业园区节水管理技术规范(征求意见稿)》编制说明
- GB/T 44186-2024固定式压缩空气泡沫灭火系统
- 血液净化十大安全目标
- 福建省漳州市2024年高一下数学期末调研模拟试题含解析
- 中国保险行业协会官方-2023年度商业健康保险经营数据分析报告-2024年3月
- 家具桌子设计说明
- DB32T3622-2019水利地理信息图形标示
- 2024年代理记账工作总结6篇
- 4D厨房管理对比
- 2024年大型集团公司IT信息化顶层规划报告
评论
0/150
提交评论