河北省张家口市怀安第一中学2022年高二数学理模拟试卷含解析_第1页
河北省张家口市怀安第一中学2022年高二数学理模拟试卷含解析_第2页
河北省张家口市怀安第一中学2022年高二数学理模拟试卷含解析_第3页
河北省张家口市怀安第一中学2022年高二数学理模拟试卷含解析_第4页
河北省张家口市怀安第一中学2022年高二数学理模拟试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省张家口市怀安第一中学2022年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知直线,点在圆外,则直线与圆的位置关系是

)(A)相交

(B)相切

(C)相离

(D)不能确定参考答案:

A略2.已知函数为偶函数,当时,,则的解集是(

)A.

B.

C.

D.参考答案:C略3.已知数列中,前项和为,且点在直线上,则=

)A.

B.

C.

D.参考答案:A4.若复数是纯虚数,则实数a的值为

()A.1

B.2

C.1或2

D.-1参考答案:B略5.已知数列{an}为等比数列,Sn是它的前n项和,若a2?a3=2a1,且a4与2a7的等差中项为,则S5=()A.35 B.33 C.31 D.29参考答案:C【考点】等比数列的性质;等比数列的前n项和.【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2?a3=2a1求得a4,再根据a4+2a7=a4+2a4q3,求得q,进而求得a1,代入S5即可.【解答】解:a2?a3=a1q?a1q2=2a1∴a4=2a4+2a7=a4+2a4q3=2×∴q=,a1==16故S5==31故选C.【点评】本题主要考查了等比数列的性质.属基础题.6.函数的定义域是()A.[-1,+∞)B.[-1,0)

C.(-1,+∞)

D.(-1,0)参考答案:A略7.已知曲线y=﹣2lnx+1的一条切线的斜率为1,则切点的横坐标为()A.﹣1 B.2 C.﹣1或2 D.参考答案:B【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出切点坐标,求得曲线对应函数的导数,可得切线的斜率,解方程可得切点的横坐标,注意函数的定义域.【解答】解:设切点坐标为(m,n),(m>0),y=﹣2lnx+1的导数为y′=x﹣,可得切线的斜率为m﹣=1,解方程可得m=2,(﹣1舍去).则切点的横坐标为2.故选:B.8.已知集合,则

(

)

A

B

C

D

参考答案:D9.下列四个命题中:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若ab≠0,则a≠0”的否命题.其中真命题的序号是()A.②、③ B.③、④ C.①、④ D.①、②参考答案:D【考点】命题的真假判断与应用.【分析】①,逆命题:三个内角均为60°的三角形是等边三角形;②,原命题为真,其逆否命题与原命题同真假;③,“全等三角形的面积相等”的否命题:不全等三角形的不面积相等;④,“若ab=0,则a=0或b=0”.【解答】解:对于①“等边三角形的三个内角均为60°”的逆命题:三个内角均为60°的三角形是等边三角形,故为真命题;对于②,“若k>0,则方程x2+2x﹣k=0的△=4+4k>0,有实根”,∴原命题为真,其逆否命题与原命题同真假,故为真命题;对于③,“全等三角形的面积相等”的否命题:不全等三角形的不面积相等,故为假命题;对于④,“若ab≠0,则a≠0”的否命题:“若ab=0,则a=0”,故为假命题.故选:D【点评】本题考查了命题的四种形式的转换,及真假判定,属于基础题.10.实数依次成等比数列,其中a1=2,a5=8,则a3的值为(

)A.-4

B.4

C.±4

D.5参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.椭圆的焦点坐标为________.参考答案:试题分析:由题意得,椭圆,可化为,所以,所以椭圆的焦点坐标分别为.考点:椭圆的标准方程及其几何性质.12.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则=

.参考答案:2【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,可得a的方程,再由切点,可得a+b=3,解得b,进而得到所求值.【解答】解:函数y=ax2+b的导数为y′=2ax,则在点(1,3)处的切线斜率为k=2a=2,即为a=1,又a+b=3,解得b=2,则=2.故答案为:2.13.已知曲线上一点,则过曲线上点的所有切线的方程中,斜率最小的切线方程是;参考答案:

14.给出定义:若函数在上可导,即存在,且导函数在上也可导,则称

在上存在二阶导函数,记,若在上恒成立,则称在上为凸函数。①

④以上四个函数在上是凸函数的是

参考答案:1.2.3略15.命题“存在R,0”的否定是____

_____。参考答案:对任意的R,>0;16.已知抛物线的顶点在坐标原点,且焦点在轴上.若抛物线上的点到焦点的距离是5,则抛物线的准线方程为

参考答案:17.若过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围是

.参考答案:(﹣∞,﹣3)∪(1,)【考点】点与圆的位置关系.【专题】计算题.【分析】把已知圆的方程化为标准方程,找出圆心P的坐标和圆的半径r,并根据二元二次方程构成圆的条件可得a的范围,利用两点间的距离公式求出|AP|的值,由过A可作圆的两条切线,得到点A在圆P外,可得|AP|的值大于圆的半径r,列出关于a的不等式,求出不等式的解集,与求出的a的范围求出并集,可得满足题意a的取值范围.【解答】解:把圆的方程化为标准方程得:(x﹣a)2+y2=3﹣2a,可得圆心P坐标为(a,0),半径r=,且3﹣2a>0,即a<,由题意可得点A在圆外,即|AP|=>r=,即有a2>3﹣2a,整理得:a2+2a﹣3>0,即(a+3)(a﹣1)>0,解得:a<﹣3或a>1,又a<,可得a<﹣3或,则实数a的取值范围是(﹣∞,﹣3)∪(1,)故答案为:(﹣∞,﹣3)∪(1,)【点评】此题考查了点与圆的位置关系,涉及的知识有:两点间的距离公式,二元二次方程构成圆的条件,以及不等式的解法,点与圆的位置关系由这点到圆心的距离d与半径r的大小关系来确定:当d=r,点在圆上;d>r,点在圆外;d<r,点在圆内.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆及直线(Ⅰ)当为何值时,直线与椭圆有公共点;(Ⅱ)求直线被椭圆截得的弦长最长时直线的方程.参考答案:(Ⅰ),解得

--------6分

(Ⅱ)设直线与椭圆交点,则

此时,的方程为.

--------12分19.(本题满分8分)已知全集,集合A=,,.(1)若,求实数的值;(2)若“”是“”的必要不充分条件,求实数的取值范围.参考答案:

略20.已知数列{an}是等比数列,a2=4,a3+2是a2和a4的等差中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2log2an﹣1,求数列{anbn}的前n项和Tn.参考答案:【考点】8H:数列递推式;8M:等差数列与等比数列的综合.【分析】(Ⅰ)等比数列{an}中,a2=4,a3+2是a2和a4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果;(Ⅱ)把(1)中求得的结果代入bn=2log2an﹣1,求出bn,利用错位相减法求出Tn.【解答】解:(Ⅰ)设数列{an}的公比为q,因为a2=4,所以a3=4q,.)因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4.即2(4q+2)=4+4q2,化简得q2﹣2q=0.因为公比q≠0,所以q=2.所以(n∈N*).(Ⅱ)因为,所以bn=2log2an﹣1=2n﹣1.所以.则,①,,②,①﹣②得,.=,所以.21.(本题10分)袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率.参考答案:(1)用树状图表示所有的结果为所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.---------------------------------5分(2)记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,----------7分所以P(A)==0.6,即恰好摸出1个黑球和1个红球的概率为0.6.---------------10分22.(本题满分14分)设关于的一元二次方程(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实数根的概率;(2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实数根的概率.参考答案:解:设事件为“方程有实数根”.当时,因为方程有实数根,则

----------------2分(1)基本事件共12个,如下:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论